Alexander Gronbach
When a semiconductor lists quick output discharge (QOD) as a feature, it will quickly discharge the output when the device is disabled (or in an “off” state). In other words, when VOUT is disconnected from VIN, VOUT will instead be connected to ground through internal circuitry, preventing the output from “floating” or entering into an undetermined state. Figure 1 shows a simplified block diagram of QOD circuitry.
The main benefit of adding QOD functionality to a system is simple: any power rail on VOUT of a QOD-enabled device will be at a known “zero” or “off” state when the device is disabled. This ensures that when you are designing your system – and especially when you are working out the timing for your power sequencing – that none of your power rails are left floating. Knowing the state of all power rails in your system (and thanks to QOD, knowing that they are actually turned off/grounded), allows you to reduce the number of “variables” in your design, lowering the risk of your design not working as intended.
The easiest way to implement QOD is to include a device which has the functionality already integrated inside. As an example, Figure 2 shows how the TPS22915 load switch implements QOD.
All load switches with QOD functionality contain an additional FET between the VOUT pin and ground pin (GND), as shown by the dotted outline in Figure 2. This creates a pull-down resistance to quickly discharge VOUT to ground. While some devices, such as the TPS22919 and TPS22918, allow you to place your own discharge resistor, most have an integrated, fixed QOD resistance. As the QOD resistance will vary for each product, you can use Equation 1 to calculate the exact QOD resistance needed for your specific power down sequencing application.
where Vf is the final VOUT voltage; Vo is the initial VOUT voltage; R is the value of the output discharge resistor; and C is the output bulk capacitance on VOUT.
Can you add QOD to a device that does not already integrate this feature? In some cases, you can multiplex certain pins of devices to provide additional functionality. One such example is the BFET pin of the TPS25924 eFuse. This pin normally drives an external blocking FET to protect a system against reverse current, as shown in Figure 3.
You can reconfigure this pin to provide QOD functionality even though it is not integrated. This can be accomplished through a very similar circuit, as shown in Figure 3, replacing the blocking FET with a discharge resistor (RDCHG in Figure 4).
Keep in mind that while QOD is beneficial in most situations, it is not always good to have. In power multiplexing applications, the QOD circuitry would create a constant path to ground on the output of the multiplexer. Additionally, if a supercapacitor is on the output of a power switch, that switch better not have QOD! If it does have QOD, it will drain the supercapacitor’s stored charge, wasting energy. Check out our load switch portfolio, which contains devices both with QOD and without QOD functionality, facilitating any power design.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated