SWRA667 January   2020 CC1312PSIP , CC1312R , CC1314R10 , CC1352P , CC1352P7 , CC1352R , CC1354P10 , CC1354R10 , CC2642R , CC2642R-Q1 , CC2652P , CC2652R , CC2652R7 , CC2652RB , CC2652RSIP

 

  1.   Cryptographic Performance and Energy Efficiency on SimpleLink™ CC13x2/CC26x2 Wireless MCUs
    1.     Trademarks
    2. 1 Abbreviations and Acronyms
    3. 2 Introduction
    4. 3 Benefits of Cryptographic Acceleration in Embedded Security Solutions
    5. 4 TI Drivers for SimpleLink MCUs
      1. 4.1 Power Management Overview
      2. 4.2 Return Behavior
        1. 4.2.1 Runtime Overhead
      3. 4.3 Efficient Power Management
    6. 5 CC13x2/CC26x2 Crypto Peripherals
      1. 5.1 AES and Hash Crypto Accelerator
      2. 5.2 Public Key Accelerator
        1. 5.2.1 ECDH Power Management Driver Example
      3. 5.3 TRNG
    7. 6 Benchmarks
      1. 6.1 AES and Hash Crypto Accelerator Based Drivers
        1. 6.1.1 AES CBC
        2. 6.1.2 AES CCM
        3. 6.1.3 AES GCM
        4. 6.1.4 AES CTR DRBG
        5. 6.1.5 SHA-224
        6. 6.1.6 SHA-256
        7. 6.1.7 SHA-384
        8. 6.1.8 SHA-512
      2. 6.2 PKA Engine Based Drivers
        1. 6.2.1 ECDH
        2. 6.2.2 ECDSA
        3. 6.2.3 ECJPAKE
      3. 6.3 TRNG Based Drivers
        1. 6.3.1 TRNG
    8. 7 Conclusion
    9. 8 References
    10.     Appendix: Plots of Blocking vs Polling Performance

ECDSA

Elliptic Curve Digital Signature Algorithm (ECDSA) (see Reference [12]) is used to asymmetrically sign and verify messages. The ECDSA benchmark consists of two operations: signing a hash of a message and verifying a hash of a message. Both operations are dominated by the cost of ECC scalar multiplications.

The benchmarks were run using the NIST-P256 curve. The ECDSA driver only supports Short-Weierstrass curves as Montgomery curve point addition is not available to implement ECDSA on Curve25519.

Generating the per-message secret number used to sign the message is not considered by the benchmark.

Table 15. ECDSA Benchmark Results

Operation Duration HW (ms) Duration SW mbed TLS (ms) Duration Improvement Average Current HW (mA) Average Current SW mbed TLS (mA) Energy Efficiency Improvement
Sign 115.7 269 2.3 1.68 3.10 4.3
Verify 230.7 943 4.1 1.67 3.10 7.5