Chris Glaser
We’ve all been there before. After selecting a particular power-supply device, you build a printed circuit board (PCB) and evaluate it in your lab. You measure some basic parameters, such as efficiency and switching frequency, and compare it to the device’s data sheet specifications. While many engineers understand why their circuit – with its different components, settings and operating conditions – doesn’t obtain the peak efficiency shown in the data sheet, differences in switching frequency beg further investigation. After all, shouldn’t the switching frequency be fixed by the device, independent of your particular circuit?
For many modern power-supply integrated circuits (ICs), the answer is actually no. While many of us learned about the traditional, oscillator-based voltage- and current-mode control topologies in school, numerous modern power-supply ICs are either on-time- or off-time-based and do not use an oscillator. Rather, the device controls the on-time or off-time to provide a regulated (as opposed to a fixed) switching frequency. This small change in architecture – from fixed to regulated frequency – is one of many trade-offs made in the design of a power-supply IC and provides some advantages: improved transient response, higher power-supply rejection ratio (PSRR) and lower output-voltage ripple.
In certain automotive applications, such as infotainment, variations in switching frequency can cause concerns about interference with the AM radio band. Generally, the switching frequency is set above 1.8MHz to stay out of band. If the switching frequency varies lower, it could come in band and possibly interfere with certain AM radio frequencies. While there are certainly ways to mitigate such interference through system design – such as through the shielding and spacing of the antenna from the power supplies – one method is to control the switching frequencies of every power supply in the infotainment system.
The DCS-Control topology is one type of control topology used in automotive infotainment systems. The TPS62130A-Q1 is a highly integrated and efficient 12VIN converter for 3A voltage rails that uses DCS-Control. While DCS-Control does not use an oscillator, the switching frequency is regulated through an on-timer. To learn more about where and why the frequency varies, see my application note “Understanding frequency variation in the DCS-Control topology.”
Here are a few key points from that application note for a typical 12VIN automotive system:
For the full explanation and lots of measured data, please read the full application note. I hope it helps explain why the switching frequency of your power supply isn’t where you expect.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated