SBAA274A September   2018  – March 2023 ADS1118 , ADS1119 , ADS1120 , ADS112C04 , ADS112U04 , ADS1146 , ADS1147 , ADS1148 , ADS114S06 , ADS114S06B , ADS114S08 , ADS114S08B , ADS1219 , ADS1220 , ADS122C04 , ADS122U04 , ADS1246 , ADS1247 , ADS1248 , ADS124S06 , ADS124S08 , ADS125H02 , ADS1260 , ADS1261 , ADS1262 , ADS1263

 

  1.   A Basic Guide to Thermocouple Measurements
  2.   Trademarks
  3. 1Thermocouple Overview
    1. 1.1 Seebeck Voltage
    2. 1.2 Thermocouple Types
      1. 1.2.1 Common Thermocouple Metals
      2. 1.2.2 Thermocouple Measurement Sensitivity
        1. 1.2.2.1 Calculating Thermoelectric Voltage from Temperature
        2. 1.2.2.2 Calculating Temperature From Thermoelectric Voltage
      3. 1.2.3 Thermocouple Construction
      4. 1.2.4 Tolerance Standards
    3. 1.3 Thermocouple Measurement and Cold-Junction Compensation (CJC)
    4. 1.4 Design Notes
      1. 1.4.1 Identify the Range of Thermocouple Operation
      2. 1.4.2 Biasing the Thermocouple
      3. 1.4.3 Thermocouple Voltage Measurement
      4. 1.4.4 Cold-Junction Compensation
      5. 1.4.5 Conversion to Temperature
      6. 1.4.6 Burn-out Detection
  4. 2Thermocouple Measurement Circuits
    1. 2.1 Thermocouple Measurement With Pullup and Pulldown Bias Resistors
      1. 2.1.1 Schematic
      2. 2.1.2 Pros and Cons
      3. 2.1.3 Design Notes
      4. 2.1.4 Measurement Conversion
      5. 2.1.5 Generic Register Settings
    2. 2.2 Thermocouple Measurement With Biasing Resistors Attached to the Negative Lead
      1. 2.2.1 Schematic
      2. 2.2.2 Pros and Cons
      3. 2.2.3 Design Notes
      4. 2.2.4 Measurement Conversion
      5. 2.2.5 Generic Register Settings
    3. 2.3 Thermocouple Measurement With VBIAS for Sensor Biasing and Pullup Resistor
      1. 2.3.1 Schematic
      2. 2.3.2 Pros and Cons
      3. 2.3.3 Design Notes
      4. 2.3.4 Measurement Conversion
      5. 2.3.5 Generic Register Settings
    4. 2.4 Thermocouple Measurement With VBIAS For Sensor Biasing and BOCS
      1. 2.4.1 Schematic
      2. 2.4.2 Pros and Cons
      3. 2.4.3 Design Notes
      4. 2.4.4 Measurement Conversion
      5. 2.4.5 Generic Register Settings
    5. 2.5 Thermocouple Measurement With REFOUT Biasing and Pullup Resistor
      1. 2.5.1 Schematic
      2. 2.5.2 Pros and Cons
      3. 2.5.3 Design Notes
      4. 2.5.4 Measurement Conversion
      5. 2.5.5 Generic Register Settings
    6. 2.6 Thermocouple Measurement With REFOUT Biasing and BOCS
      1. 2.6.1 Schematic
      2. 2.6.2 Pros and Cons
      3. 2.6.3 Design Notes
      4. 2.6.4 Measurement Conversion
      5. 2.6.5 Generic Register Settings
    7. 2.7 Thermocouple Measurement With Bipolar Supplies And Ground Biasing
      1. 2.7.1 Schematic
      2. 2.7.2 Pros and Cons
      3. 2.7.3 Design Notes
      4. 2.7.4 Measurement Conversion
      5. 2.7.5 Generic Register Settings
    8. 2.8 Cold-Junction Compensation Circuits
      1. 2.8.1 RTD Cold-Junction Compensation
        1. 2.8.1.1 Schematic
          1. 2.8.1.1.1 Design Notes
          2. 2.8.1.1.2 Measurement Conversion
          3. 2.8.1.1.3 Generic Register Settings
      2. 2.8.2 Thermistor Cold-Junction Compensation
        1. 2.8.2.1 Schematic
        2. 2.8.2.2 Design Notes
        3. 2.8.2.3 Measurement Conversion
        4. 2.8.2.4 Generic Register Settings
      3. 2.8.3 Temperature Sensor Cold-Junction Compensation
        1. 2.8.3.1 Schematic
        2. 2.8.3.2 Design Notes
        3. 2.8.3.3 Measurement Conversion
        4. 2.8.3.4 Generic Register Settings
  5. 3Summary
  6. 4Revision History

Common Thermocouple Metals

All dissimilar metals used to construct a thermocouple display a change in voltage from the Seebeck effect, but several specific combinations are used to make thermocouples. The thermocouples can be classified into two different construction types: base metal thermocouples and noble metal thermocouples.

Base metal thermocouples are the most common thermocouples. Noble metal thermocouples are composed of precious metals such as platinum and rhodium. Noble metal thermocouples are more expensive, and are used in higher temperature applications.

Regardless of metal lead, each thermocouple type is designated a single letter to indicate the two metals used. For example, a J-type thermocouple is constructed from iron and constantan. With each type, the thermoelectric properties are standardized so that temperature measurements are repeatable. Thermocouple leads and connectors are standardized with color plugs and jacks, indicating the type of thermocouple. Different colors for insulation and lead wires also indicate the thermocouple grade and extension grade. Table 1-1 lists several common thermocouple types and their characteristics.

Table 1-1 Common Thermocouple Types
Thermocouple
Type
Lead Metal
A (+)
Lead Metal
B (–)
Temperature
Range (°C)
EMF over
Temperature
Range (mV)
Seebeck
Coefficient
(µV/°C at 0°C)
JIronConstantan–210 to 1200–8.095 to 69.55350.37
KChromelAlumel–270 to 1370–6.458 to 54.88639.48
TCopperConstantan–200 to 400–6.258 to 20.87238.74
EChromelConstantan–270 to 1000–9.385 to 76.37358.70
SPlatinum and
10% Rhodium
Platinum–50 to 1768–0.236 to 18.69310.19