SBAA483 February   2021 ADS1120 , ADS112C04 , ADS112U04 , ADS114S06 , ADS114S06B , ADS114S08 , ADS114S08B , ADS1220 , ADS122C04 , ADS122U04 , ADS124S06 , ADS124S08 , ADS125H02 , ADS1260 , ADS1261 , ADS1262 , ADS1263

 

  1.   Abstract
  2.   Trademarks
  3. 1Introduction
  4. 2Features Used to Detect Wire Breaks in RTD Systems
    1. 2.1 Detecting a Wire Break Using a Continuous VREF Monitor
    2. 2.2 Detecting a Wire Break Using a Periodic VREF Monitor
    3. 2.3 Detecting a Wire Break Using Separate Analog Inputs
  5. 3Wire-Break Detection Methods for Different RTD Configurations
    1. 3.1 Wire-Break Detection Using 2-Wire RTDs
    2. 3.2 Wire-Break Detection Using 3-Wire RTDs
      1. 3.2.1 Wire-Break Detection in a One-IDAC, 3-Wire RTD System
        1. 3.2.1.1 Detecting a Break in Lead 2 in a One-IDAC, 3-Wire RTD System
          1. 3.2.1.1.1 Detecting a Break in Lead 2 in a One-IDAC, 3-Wire RTD System Using a High-Side RREF
        2. 3.2.1.2 Wire-Break Detection Summary for a One-IDAC, 3-Wire RTD System
      2. 3.2.2 Wire-Break Detection in a Two-IDAC, 3-Wire RTD System
        1. 3.2.2.1 Detecting Lead 1 or 2 breaks in a two IDAC, 3-wire RTD system using a low-side RREF
        2. 3.2.2.2 Detecting Lead 1 or 2 Breaks in a Two-IDAC, 3-Wire RTD System Using a High-Side RREF
        3. 3.2.2.3 Wire-Break Detection Summary for a Two-IDAC, 3-Wire RTD System
    3. 3.3 Wire-Break Detection in a 4-Wire RTD System
      1. 3.3.1 Detecting Lead 2 and Lead 3 Breaks in a 4-Wire RTD System Using a Low-Side RREF
      2. 3.3.2 Detecting Lead 2 and Lead 3 Breaks in a 4-Wire RTD System Using a High-Side RREF
      3. 3.3.3 Wire-Break Detection Summary for a 4-Wire RTD System
  6. 4Settling Time Considerations for RTD Wire-Break Detection
  7. 5Summary
  8.   A How Integrated PGA Rail Detection Helps Identify Wire Breaks
  9.   B Pseudo-Code for RTD Wire-Break Detection
    1.     B.1 Pseudo-Code for a 2-Wire RTD System (Low-Side or High-Side RREF)
    2.     B.2 Pseudo-Code for a One-IDAC, 3-Wire RTD System (Low-Side or High-Side RREF)
    3.     B.3 Pseudo-Code for a Two-IDAC, 3-Wire RTD System (Low-Side or High-Side RREF)
    4.     B.4 Pseudo-Code for a 4-Wire RTD System (Low-Side or High-Side RREF)

Wire-Break Detection Methods for Different RTD Configurations

The simplest form of RTD wire-break detection is the ability to detect any wire breaks. In other words, the system only needs to identify if one or more wires are broken but does not need to determine which wire breaks. This document discusses the events that occur as each wire (or group of wires) breaks in the following RTD configurations:

  • 2-wire RTD using a low-side RREF
  • 2-wire RTD using a high-side RREF
  • 3-wire RTD using one IDAC and a low-side RREF
  • 3-wire RTD using one IDAC and a high-side RREF
  • 3-wire RTD using two IDACs and a low-side RREF
  • 3-wire RTD using two IDACs and a high-side RREF
  • 4-wire RTD using a low-side RREF
  • 4-wire RTD using a high-side RREF