SBOA510 March   2021 OPA455 , OPA462

 

  1.   Trademarks
  2. 1Introduction
  3. 2Three Op Amp OPA462 HV Solution
  4. 3Lower Voltage, Lower Cost Three Op Amp Solution
  5. 4OPA462 300 Vpp Output Solution With Discrete Transistor Supply-Rail Drivers
  6. 5Lessons Learned from the Practical Implementation of the HV Op Amp Solutions
  7.   A Appendix
    1.     A.1 Overview
    2.     A.2 Summary of Results
    3.     A.3 Test Setup and Equipment
    4.     A.4 Printed Circuit Boards
    5.     A.5 Power Supply, Source Measurement Unit (SMU)
    6.     A.6 Arbitrary Waveform Generator (AWG)
    7.     A.7 Oscilloscope
    8.     A.8 Circuit 1: OPA462 Three op amp Solution
      1.      A.8.1 Schematic
      2.      A.8.2 Conventions
      3.      A.8.3 Results
    9.     A.9 Circuit 2: Lower Voltage, Lower Cost Three Op Amp Solution
      1.      A.9.1 Schematic
      2.      A.9.2 Conventions
      3.      A.9.3 Results
    10.     A.10 Circuit 3: OPA462 300 Vpp Output Solution With Discrete Transistor Supply-Rail Drivers
      1.      A.10.1 Schematic
      2.      A.10.2 Conventions
      3.      A.10.3 Results

Results

GUID-20210308-CA0I-QFLW-JS9T-GDSGS4XRMC4F-low.pngFigure 6-9 Noninverting Configuration, G = +51 V/V, 1-kHz Sine Wave (Output 206 Vpp)
GUID-20210308-CA0I-TSKP-FMJB-3DWXNPG6XCMP-low.pngFigure 6-10 Noninverting Configuration, G = +51 V/V, 1-kHz Square Wave (Output 211 Vpp)

Figure 6-11 and Figure 6-12 show the falling and rising edges of the above square wave waveform but at a higher zoom level. Note that the actual values of Channels 1, 3, and 4 are 10 × greater than the image implies, due to the attenuation settings of the scope probes.

GUID-20210212-CA0I-KGNM-6NMM-SCVB5MGJ8FXM-low.png Figure 6-11 Noninverting Configuration, G = +51 V/V, 1-kHz Square Wave (4 Vpp), Zoom on Falling Edge
GUID-20210212-CA0I-FRMR-QBXC-ZRQT2QVH0VTT-low.png Figure 6-12 Noninverting Configuration G = +51 V/V, 1-kHz Square Wave (4 Vpp), Zoom on Rising Edge