SBOSA51 December   2020 THS4567

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics: Differential TIA Mode, ICM loop enabled
    6. 6.6 Electrical Characteristics: FDA operation, ICM loop disabled
    7. 6.7 Typical Characteristics: (VS+) – (VS–) = 5 V
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Main Amplifier
      2. 7.3.2 Output Common-Mode Control
      3. 7.3.3 Input Common-Mode Control
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Differential Transimpedance Amplifier Mode
      3. 7.4.3 Fully Differential Amplifier (FDA) Mode
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Noise Analysis
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure (THS4567 in TIA Mode)
        1. 8.2.2.1 OPA Mode Configuration
      3. 8.2.3 Application Curves
    3. 8.3 Differential TIA with 0-V Biased Photodiode
    4. 8.4 Differential AC Coupled TIA
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Board Layout Recommendations
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Board Layout Recommendations

Similar to all high-speed devices, best system performance is achieved with close attention to board layout. General high-speed signal path layout suggestions include:

  • Continuous ground planes are preferred for signal routing with matched impedance traces for longer runs; however, both ground and power planes must be opened up around the capacitive sensitive input and output device pins. When the signal goes to a resistor, parasitic capacitance becomes more of a band-limiting issue and less of a stability issue.
  • Good high-frequency decoupling capacitors (0.01 µF) are required to a ground plane at the device power pins. Additional higher-value capacitors (2.2 µF) are also required but can be placed further from the device power pins and shared among devices. For best high-frequency decoupling, consider X2Y supply decoupling capacitors that offer a much higher self-resonance frequency over standard capacitors.
  • Differential signal routing over any appreciable distance must use microstrip layout techniques with matched impedance traces.
  • The THS4567 outputs are sensitive to capacitive loading. Isolate the output of the THS4567 from any capacitive load by placing series isolation resistors close to the amplifiers output pins.