SCDS404B March   2021  – November 2022 TMUX7411F , TMUX7412F , TMUX7413F

PRODMIX  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Thermal Information
    4. 7.4  Recommended Operating Conditions
    5. 7.5  Electrical Characteristics: Global
    6. 7.6  ±15 V Dual Supply: Electrical Characteristics
    7. 7.7  ±20 V Dual Supply: Electrical Characteristics
    8. 7.8  12 V Single Supply: Electrical Characteristics
    9. 7.9  36 V Single Supply: Electrical Characteristics
    10. 7.10 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1  On-Resistance
    2. 8.2  Turn-On and Turn-Off Time
    3. 8.3  Off-Leakage Current
    4. 8.4  On-Leakage Current
    5. 8.5  Input and Output Leakage Current Under Overvoltage Fault
    6. 8.6  Fault Response Time
    7. 8.7  Fault Recovery Time
    8. 8.8  Fault Flag Response Time
    9. 8.9  Fault Flag Recovery Time
    10. 8.10 Charge Injection
    11. 8.11 Off Isolation
    12. 8.12 Inter-Channel Crosstalk
    13. 8.13 Bandwidth
    14. 8.14 THD + Noise
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Flat ON-Resistance
      2. 9.3.2 Protection Features
        1. 9.3.2.1 Input Voltage Tolerance
        2. 9.3.2.2 Powered-Off Protection
        3. 9.3.2.3 Fail-Safe Logic
        4. 9.3.2.4 Overvoltage Protection and Detection
        5. 9.3.2.5 ESD Protection
        6. 9.3.2.6 Latch-Up Immunity
        7. 9.3.2.7 EMC Protection
      3. 9.3.3 Overvoltage Fault Flags
      4. 9.3.4 Bidirectional Operation
    4. 9.4 Device Functional Modes
      1. 9.4.1 Normal Mode
      2. 9.4.2 Fault Mode
      3. 9.4.3 Truth Tables
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
      3. 10.2.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 Support Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

±15 V Dual Supply: Electrical Characteristics

VDD = +15 V ± 10%, VSS = –15 V ±10%, GND = 0 V (unless otherwise noted) 
Typical at VDD = +15 V, VSS = –15 V, TA = 25℃  (unless otherwise noted)
PARAMETER TEST CONDITIONS TA MIN TYP MAX UNIT
ANALOG SWITCH
RON On-resistance VS = –10 V to +10 V
ID = –10 mA
25°C 8.3 11
–40°C to +85°C 14
–40°C to +125°C 16.5
ΔRON On-resistance mismatch between channels VS = –10 V to +10 V
ID = –10 mA
25°C 0.06 0.45
–40°C to +85°C 0.5
–40°C to +125°C 0.6
RFLAT On-resistance flatness VS = –10 V to +10 V
ID = –10 mA
25°C 0.01 0.4
–40°C to +85°C 0.4
–40°C to +125°C 0.4
RON_DRIFT On-resistance drift VS = 0 V, IS = –10 mA –40°C to +125°C 0.04 Ω/°C
IS(OFF) Input leakage current(1) VDD = 16.5 V, VSS = –16.5 V
Switch state is off
VS = +10 V / –10 V
VD = –10 V / + 10 V
25°C –0.7 0.03 0.7 nA
–40°C to +85°C –2 2
–40°C to +125°C –10 10
ID(OFF) Output off leakage current(1) VDD = 16.5 V, VSS = –16.5 V
Switch state is off
VS = +10 V / –10 V
VD = –10 V / + 10 V
25°C –0.7 0.03 0.7 nA
–40°C to +85°C –2 2
–40°C to +125°C –12 12
IS(ON)
ID(ON)
Output on leakage current(2) VDD = 16.5 V, VSS = –16.5 V
Switch state is on
VS = VD = ±10 V
25°C –0.7 0.05 0.7 nA
–40°C to +85°C –2 2
–40°C to +125°C –15 15
FAULT CONDITION
IS(FA) Input leakage current
durring overvoltage
VS = ± 60 V, GND = 0 V, 
VDD = 16.5 V, VSS = –16.5 V
–40°C to +125°C ±100 µA
IS(FA) Grounded Input leakage current
during overvoltage with
grounded supply voltages
VS = ± 60 V, GND = 0 V
VDD = VSS = 0 V
–40°C to +125°C ±125 µA
IS(FA) Floating Input leakage current
during overvoltage with
floating supply voltages
VS = ± 60 V, GND = 0 V,
VDD = VSS = floating
–40°C to +125°C ±125 µA
ID(FA) Output leakage current
during overvoltage
VS = ± 60 V, GND = 0 V,
VDD = 16.5 V, VSS = –16.5 V
–15.5 V ≤ VD ≤ 16.5 V
25°C –20 ±0.1 20 nA
–40°C to +85°C –30 30
–40°C to +125°C –60 60
ID(FA) Grounded Output leakage current
during overvoltage with
grounded supply voltages
VS = ± 60 V, GND = 0 V,
VDD = VSS =  0 V
25°C –30 ±0.01 30 nA
–40°C to +85°C –50 50
–40°C to +125°C –90 90
ID(FA) Floating Output leakage current
during overvoltage with
floating supply voltages
VS = ± 60 V, GND = 0 V,
VDD = VSS = floating
25°C ±2 µA
–40°C to +85°C ±3
–40°C to +125°C ±4
SWITCHING CHARACTERISTICS
tON Turn-on time VS = 10 V,
RL = 300 Ω, CL= 12 pF
25°C 480 680 ns
–40°C to +85°C 710
–40°C to +125°C 710
tOFF Turn-off time VS = 10 V,
RL = 300 Ω, CL= 12 pF
25°C 50 100 ns
–40°C to +85°C 120
–40°C to +125°C 150
tRESPONSE Fault response time RL = 300 Ω, CL= 12 pF 25°C 100 350 ns
–40°C to +85°C 380
–40°C to +125°C 400
tRECOVERY Fault recovery time RL = 300 Ω, CL= 12 pF 25°C 1600 4500 ns
–40°C to +85°C 4800
–40°C to +125°C 4800
tRESPONSE(FLAG) Fault flag response time RL = 300 Ω, CL= 12 pF, 
RPU = 1 kΩ, CL_FF = 12 pF
25°C 180 ns
tRECOVERY(FLAG) Fault flag recovery time RL = 300 Ω, CL= 12 pF, 
RPU = 1 kΩ, CL_FF = 12 pF
25°C 1.2 µs
tBBM Break-before-make time delay (TMUX7413F only) VS = 10 V, RL = 300 Ω, CL= 12 pF –40°C to +125°C 80 120 ns
QJ Charge injection VS = 0 V, CL = 1 nF 25°C –300 pC
OISO Off-isolation RS = 50 Ω, RL = 50 Ω, CL = 5 pF,
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz
25°C –60 dB
XTALK Crosstalk RS = 50 Ω, RL = 50 Ω, CL = 5 pF,
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz
25°C –100 dB
BW –3 dB bandwidth RS = 50 Ω, RL = 50 Ω, CL = 5 pF,
VS = 200 mVRMS, VBIAS = 0 V
25°C 650 MHz
ILOSS Insertion loss RS = 50 Ω, RL = 50 Ω, CL = 5 pF,
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz
25°C –0.7 dB
THD+N Total harmonic distortion plus noise RS = 50 Ω, RL = 10 kΩ,
VS = 15 VPP, VBIAS = 0 V,
f = 20 Hz to 20 kHz
25°C 0.0006 %
CS(OFF) Input off-capacitance f = 1 MHz, VS = 0 V 25°C 10 pF
CD(OFF) Output off-capacitance f = 1 MHz, VS = 0 V 25°C 12 pF
CS(ON)
CD(ON)
Input/Output on-capacitance f = 1 MHz, VS = 0 V 25°C 14 pF
POWER SUPPLY
IDD VDD supply current VDD = 16.5 V, VSS = –16.5 V,
VSELx = 0 V, 5 V, or VDD
25°C 0.32 0.5 mA
–40°C to +85°C 0.5
–40°C to +125°C 0.6
ISS VSS supply current VDD = 16.5 V, VSS = –16.5 V,
VSELx = 0 V, 5 V, or VDD
25°C 0.26 0.4 mA
–40°C to +85°C 0.4
–40°C to +125°C 0.5
IGND GND current 25°C 0.06 mA
IDD(FA) VDD supply current under fault VS = ± 60 V,
VDD = 16.5 V, VSS = –16.5 V,
VSELx = 0 V, 5 V, or VDD
25°C 0.27 0.5 mA
–40°C to +85°C 0.5
–40°C to +125°C 0.6
ISS(FA) VSS supply current under fault VS = ± 60 V,
VDD = 16.5 V, VSS = –16.5 V,
VSELx = 0 V, 5 V, or VDD
25°C 0.2 0.3 mA
–40°C to +85°C 0.3
–40°C to +125°C 0.4
IGND(FA) GND current under fault 25°C 0.15 mA
When VS is positive,VD is negative. And when VS is negative, VD is positive.
When VS is at a voltage potential, VD is floating. And when VD is at a voltage potential, VS is floating.