SCES959A December   2023  – April 2024 TXV0108

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics
    6. 5.6  Switching Characteristics, VCCA = 1.2 ± 0.06 V
    7. 5.7  Switching Characteristics, VCCA = 1.8 ± 0.15 V
    8. 5.8  Switching Characteristics, VCCA = 2.5 ± 0.2 V
    9. 5.9  Switching Characteristics, VCCA = 3.3 ± 0.3 V
    10. 5.10 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1 Load Circuit and Voltage Waveforms
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Balanced High-Drive CMOS Push-Pull Outputs
      2. 7.3.2 Partial Power Down (Ioff)
      3. 7.3.3 VCC Isolation and VCC Disconnect (Ioff-float)
      4. 7.3.4 Over-Voltage Tolerant Inputs
      5. 7.3.5 Negative Clamping Diodes
      6. 7.3.6 Fully Configurable Dual-Rail Design
      7. 7.3.7 Supports Timing Sensitive Translation
      8. 7.3.8 Integrated Damping Resistor and Impedance Matching
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 System Examples
      1. 8.3.1 Solving Power Sequencing Challenges with the TXV0108
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Layout Guidelines

For device reliability, following common printed-circuit board layout guidelines are recommended:

  • Use short trace lengths to avoid excessive loading.
  • Use bypass capacitors on the power supply pins and place them as close to the device as possible.
  • A 0.1µF bypass capacitor is recommended, but transient performance can be improved by having both 1µF and 0.1µF capacitors in parallel with the smallest value capacitor placed closest to the power pin.
  • The high drive capability of this device creates fast edges into light loads. Routing and load conditions should be considered to prevent ringing.