SLAA957 September   2020 MSP430AFE221 , MSP430AFE222 , MSP430AFE223 , MSP430AFE231 , MSP430AFE232 , MSP430AFE233 , MSP430AFE251 , MSP430AFE252 , MSP430AFE253 , MSP430F2003 , MSP430F2013 , MSP430F2013-EP , MSP430F423A , MSP430F4250 , MSP430F425A , MSP430F4260 , MSP430F4270 , MSP430F427A , MSP430F47126 , MSP430F47127 , MSP430F47163 , MSP430F47166 , MSP430F47167 , MSP430F47173 , MSP430F47176 , MSP430F47177 , MSP430F47183 , MSP430F47186 , MSP430F47187 , MSP430F47193 , MSP430F47196 , MSP430F47197 , MSP430F477 , MSP430F478 , MSP430F4783 , MSP430F4784 , MSP430F479 , MSP430F4793 , MSP430F4794 , MSP430F6720 , MSP430F6720A , MSP430F6721 , MSP430F6721A , MSP430F6723 , MSP430F6723A , MSP430F6724 , MSP430F6724A , MSP430F6725 , MSP430F6725A , MSP430F6726 , MSP430F6726A , MSP430F6730 , MSP430F6730A , MSP430F6731 , MSP430F6731A , MSP430F6733 , MSP430F6733A , MSP430F6734 , MSP430F6734A , MSP430F6735 , MSP430F6735A , MSP430F6736 , MSP430F6736A , MSP430F6745 , MSP430F67451 , MSP430F67451A , MSP430F6745A , MSP430F6746 , MSP430F67461 , MSP430F67461A , MSP430F6746A , MSP430F6747 , MSP430F67471 , MSP430F67471A , MSP430F6747A , MSP430F6748 , MSP430F67481 , MSP430F67481A , MSP430F6748A , MSP430F6749 , MSP430F67491 , MSP430F67491A , MSP430F6749A , MSP430F67621 , MSP430F67621A , MSP430F67641 , MSP430F67641A , MSP430F6765 , MSP430F67651 , MSP430F67651A , MSP430F6765A , MSP430F6766 , MSP430F67661 , MSP430F67661A , MSP430F6766A , MSP430F6767 , MSP430F67671 , MSP430F67671A , MSP430F6767A , MSP430F6768 , MSP430F67681 , MSP430F67681A , MSP430F6768A , MSP430F6769 , MSP430F67691 , MSP430F67691A , MSP430F6769A , MSP430F6775 , MSP430F67751 , MSP430F67751A , MSP430F6775A , MSP430F6776 , MSP430F67761 , MSP430F67761A , MSP430F6776A , MSP430F6777 , MSP430F67771 , MSP430F67771A , MSP430F6777A , MSP430F6778 , MSP430F67781 , MSP430F67781A , MSP430F6778A , MSP430F6779 , MSP430F67791 , MSP430F67791A , MSP430F6779A , MSP430FE423 , MSP430FE4232 , MSP430FE423A , MSP430FE4242 , MSP430FE425 , MSP430FE4252 , MSP430FE425A , MSP430FE427 , MSP430FE4272 , MSP430FE427A , MSP430FG4250 , MSP430FG4260 , MSP430FG4270 , MSP430FG477 , MSP430FG478 , MSP430FG479 , MSP430FG6425 , MSP430FG6426 , MSP430FG6625 , MSP430FG6626 , MSP430FR5041 , MSP430FR5043 , MSP430FR50431 , MSP430FR6005 , MSP430FR6007 , MSP430FR6041 , MSP430FR6043 , MSP430FR60431 , MSP430FR6045 , MSP430FR6047 , MSP430FR60471 , MSP430I2020 , MSP430I2021 , MSP430I2030 , MSP430I2031 , MSP430I2040 , MSP430I2041

 

  1.   Abstract
  2.   Trademarks
  3. 1Introduction: MSP Sigma-Delta ADCs and Common Applications
  4. 2MSP Sigma-Delta ADC Portfolio
  5. 3Sigma-Delta ADC Overview
  6. 4MSP Sigma-Delta ADC Features
    1. 4.1  ADC Inputs: Differential or Single-Ended
    2. 4.2  Input Channels: Independent or Multiplexed
    3. 4.3  Integrated Buffers
    4. 4.4  Integrated PGAs
    5. 4.5  Offset Calibration: Internal or External
    6. 4.6  Voltage Reference: Internal or External
    7. 4.7  ADC Modulator Clock Frequency: Fixed or Adjustable
    8. 4.8  Sampling Rate versus Data Rate
    9. 4.9  Conversion Mode: Single or Continuous
    10. 4.10 Groups of ADC Channels
    11. 4.11 Preload
    12. 4.12 Output Format: Unipolar or Bipolar Data
    13. 4.13 Module Synchronization
    14. 4.14 Architecture: Discrete-Time versus Continuous-Time
  7. 5Solutions to Common MSP Sigma-Delta ADC Configuration Issues
    1. 5.1 ADC Input Configuration
      1. 5.1.1 Settling Time Exceeds Recommended Minimum
      2. 5.1.2 Amplitude of the Input Signal Exceeds FSR
      3. 5.1.3 Missing Anti-Aliasing Filters
    2. 5.2 ADC Clocking Configuration
      1. 5.2.1 Incorrect Sampling Frequency
    3. 5.3 ADC Results
      1. 5.3.1 Unexpected Output Data Format
      2. 5.3.2 Low Resolution
      3. 5.3.3 Data Interpretation
    4. 5.4 Reference Module (REF) Configuration
      1. 5.4.1 Choosing Between an Internal or External Reference
      2. 5.4.2 Connecting the Recommended Capacitors
      3. 5.4.3 Delaying Conversions Until the Reference Settles
    5. 5.5 Hardware Recommendations
  8. 6Frequently Asked Questions
  9. 7References

Data Interpretation

The digital output represents the input signal within +/-FSR (depending on the format). However, the output will probably be converted into a real-world value with understandable units such as degrees or amps. Typically, this process includes applying a known input signal representing a known condition (for example, 25°C), then multiplying the related digital output with a scaling factor and then adding or subtracting an offset if necessary. The scaling factor can also help avoid using decimals in the final results (for example, 2500°C for 25.00°C). The offset may include both the unit conversion offset and the PGA offset.