SLAAE71 December   2022 MSPM0G1105 , MSPM0G1106 , MSPM0G1107 , MSPM0G1505 , MSPM0G1506 , MSPM0G1507 , MSPM0G3105 , MSPM0G3106 , MSPM0G3107 , MSPM0G3505 , MSPM0G3506 , MSPM0G3507

 

  1.   Abstract
  2.   Trademarks
  3. 1Overview
  4. 2Low-Power Features in PMCU
    1. 2.1 Overview
      1. 2.1.1 Power Domains and Power Modes
      2. 2.1.2 Power Management (PMU)
        1. 2.1.2.1 Supply Supervisors
        2. 2.1.2.2 Peripheral Power Control
        3. 2.1.2.3 VBOOST for Analog Muxes
      3. 2.1.3 Clock Module (CKM)
        1. 2.1.3.1 Oscillators
        2. 2.1.3.2 Clocks
      4. 2.1.4 System Controller (SYSCTL)
        1. 2.1.4.1 Asynchronous Fast Clock Requests
        2. 2.1.4.2 Shutdown Mode Handling
  5. 3Low-Power Optimization
    1. 3.1 Low-Power Basics
    2. 3.2 MSPM0 Low-Power Feature Use
      1. 3.2.1 Low-Power Modes
      2. 3.2.2 System Clock and Peripheral Operation Frequency
      3. 3.2.3 I/O Configuration
      4. 3.2.4 Event Manager
      5. 3.2.5 Analog Peripheral Low-Power Features
      6. 3.2.6 Run Code From RAM
    3. 3.3 Software Coding Strategies
    4. 3.4 Hardware Design Strategies
  6. 4Power Consumption Measurement and Evaluation
    1. 4.1 Current Evaluation
    2. 4.2 Current Measurement
      1. 4.2.1 Current Measurement

Supply Supervisors

Two supply supervisor circuits are available:

The fixed power-on reset (POR) circuit to indicate that the external supply has reached sufficient for the device to run correctly.

The user-programmable brownout reset (BOR) circuit, which ensures that the external supply is maintained at a sufficient voltage to support correct operation of the device, which can be configured to other three BOR levels after startup.