SLAAE71 December   2022 MSPM0G1105 , MSPM0G1106 , MSPM0G1107 , MSPM0G1505 , MSPM0G1506 , MSPM0G1507 , MSPM0G3105 , MSPM0G3106 , MSPM0G3107 , MSPM0G3505 , MSPM0G3506 , MSPM0G3507

 

  1.   Abstract
  2.   Trademarks
  3. 1Overview
  4. 2Low-Power Features in PMCU
    1. 2.1 Overview
      1. 2.1.1 Power Domains and Power Modes
      2. 2.1.2 Power Management (PMU)
        1. 2.1.2.1 Supply Supervisors
        2. 2.1.2.2 Peripheral Power Control
        3. 2.1.2.3 VBOOST for Analog Muxes
      3. 2.1.3 Clock Module (CKM)
        1. 2.1.3.1 Oscillators
        2. 2.1.3.2 Clocks
      4. 2.1.4 System Controller (SYSCTL)
        1. 2.1.4.1 Asynchronous Fast Clock Requests
        2. 2.1.4.2 Shutdown Mode Handling
  5. 3Low-Power Optimization
    1. 3.1 Low-Power Basics
    2. 3.2 MSPM0 Low-Power Feature Use
      1. 3.2.1 Low-Power Modes
      2. 3.2.2 System Clock and Peripheral Operation Frequency
      3. 3.2.3 I/O Configuration
      4. 3.2.4 Event Manager
      5. 3.2.5 Analog Peripheral Low-Power Features
      6. 3.2.6 Run Code From RAM
    3. 3.3 Software Coding Strategies
    4. 3.4 Hardware Design Strategies
  6. 4Power Consumption Measurement and Evaluation
    1. 4.1 Current Evaluation
    2. 4.2 Current Measurement
      1. 4.2.1 Current Measurement

Clock Module (CKM)

The clock module contains the internal and external oscillators, the clock monitors, and the clock selection and control logic. A frequency clock counter is also provided for checking and/or calibrating the frequency of high-speed clocks against either the LFXT/LFCLK_IN or a reference period/pulse provided on an IO pin.

Normally, the clock source and clock frequency will highly affect the system power consumption. As the SYSCTL will control the clock source switching between different power modes, users only need to select suitable oscillator clock sources for clocks, and use clocks with limited frequency range according to their typical application. The simplified CKM is shown in Figure 2-3.

Figure 2-3 MSPM0Gxx CKM Block Diagram