SLAAEH6 September   2024 TAA5212 , TAA5412-Q1 , TAC5111 , TAC5111-Q1 , TAC5112 , TAC5211 , TAC5212 , TAC5212-Q1 , TAC5311-Q1 , TAC5312-Q1 , TAC5411-Q1 , TAC5412-Q1 , TAD5112 , TAD5112-Q1 , TAD5212 , TAD5212-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2Infinite Impulse Response Filters
    1. 2.1 Digital Biquad Filter
  6. 3TAC5x1x and TAC5x1x-Q1 Digital Biquad Filters
    1. 3.1 Filter Design using PurePath™ Console
      1. 3.1.1 Example of Programming Biquad Filters Using PurePath™ Console
    2. 3.2 Generating Coefficients N0, N1, N2, D1, D2 using a Digital Filter Design Package
    3. 3.3 Avoiding Overflow Conditions
    4. 3.4 Biquad Filter Allocation on Recording Channel
    5. 3.5 Biquad Filter Allocation on Playback Channel
    6. 3.6 Biquad Filter Programming Example on the TAC5x1x
  7. 4Typical Audio Applications of Biquad Filters
    1. 4.1 Parametric Equalizers
    2. 4.2 Crossover Networks
    3. 4.3 Voice Boost
    4. 4.4 Bass Boost
    5. 4.5 Removing 50Hz–60Hz Hum With Notch Filters
  8. 5Summary
  9. 6References

Avoiding Overflow Conditions

When cascading several biquad filters that add gain to the signal, make sure the overall response of the system does not cause the system to overflow. The biquad are computed in 32-bit fixed point arithmetic. If the overall response of the system in conjunction with the input signal is too large, undesired results can result due to arithmetic saturation. If saturation or overflow occurs, scale the input signal or scale down the coefficients of one or more biquad to keep the overall response of the system from saturating or overflowing.

Note that the overall response of the system is dependent on all the enabled components of the signal chain. The Digital High-Pass filter changes the frequency response at the low frequencies in conjunction with the Digital Biquad Filter response since both of these filters are cascaded together.