SLAAEH6 September   2024 TAA5212 , TAA5412-Q1 , TAC5111 , TAC5111-Q1 , TAC5112 , TAC5211 , TAC5212 , TAC5212-Q1 , TAC5311-Q1 , TAC5312-Q1 , TAC5411-Q1 , TAC5412-Q1 , TAD5112 , TAD5112-Q1 , TAD5212 , TAD5212-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2Infinite Impulse Response Filters
    1. 2.1 Digital Biquad Filter
  6. 3TAC5x1x and TAC5x1x-Q1 Digital Biquad Filters
    1. 3.1 Filter Design using PurePath™ Console
      1. 3.1.1 Example of Programming Biquad Filters Using PurePath™ Console
    2. 3.2 Generating Coefficients N0, N1, N2, D1, D2 using a Digital Filter Design Package
    3. 3.3 Avoiding Overflow Conditions
    4. 3.4 Biquad Filter Allocation on Recording Channel
    5. 3.5 Biquad Filter Allocation on Playback Channel
    6. 3.6 Biquad Filter Programming Example on the TAC5x1x
  7. 4Typical Audio Applications of Biquad Filters
    1. 4.1 Parametric Equalizers
    2. 4.2 Crossover Networks
    3. 4.3 Voice Boost
    4. 4.4 Bass Boost
    5. 4.5 Removing 50Hz–60Hz Hum With Notch Filters
  8. 5Summary
  9. 6References

Parametric Equalizers

Cascading several parametric equalizers provide frequency shaping control of the input signal with three control settings: gain, center frequency, and bandwidth or Q-factor. Parametric equalizers control the tone and sound to flatten or match different input sources during mixing or provide particular effect to the input signal. Equalization usually compensates for the physical response of microphones or speakers, balances the tone of several instruments, or changes the timbre of an instrument since these filers provide very selective frequency adjustment during mixing or a specific range effect during recording. For example, small ear-bud headphones might not be able to reproduce low-frequency audio components in a similar fashion as the over-the-head type headphones or woofer speakers.