SLAAEO8 October   2024 MSPM0C1103 , MSPM0C1103-Q1 , MSPM0C1104 , MSPM0C1104-Q1 , MSPM0G1105 , MSPM0G1106 , MSPM0G1107 , MSPM0G1505 , MSPM0G1506 , MSPM0G1507 , MSPM0G3105 , MSPM0G3105-Q1 , MSPM0G3106 , MSPM0G3106-Q1 , MSPM0G3107 , MSPM0G3107-Q1 , MSPM0G3505 , MSPM0G3505-Q1 , MSPM0G3506 , MSPM0G3506-Q1 , MSPM0G3507 , MSPM0G3507-Q1 , MSPM0G3519 , MSPM0L1105

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1ADC Introduction
    1. 1.1 SAR ADC Principle
    2. 1.2 ADC Parameters
      1. 1.2.1 Static Parameters
      2. 1.2.2 Dynamic Parameters
        1. 1.2.2.1 AC Parameters
        2. 1.2.2.2 DC Parameters
  5. 2ADC Noise Analysis
    1. 2.1 ADC Noise Classification
      1. 2.1.1 ADC Noise
      2. 2.1.2 Reference Noise
      3. 2.1.3 Power Supply Noise
      4. 2.1.4 ADC Input Noise
      5. 2.1.5 Clock Jitter
    2. 2.2 How to Reduce Noise
      1. 2.2.1 Reducing Input Noise Through RC Filtering
      2. 2.2.2 Layout Suggestions
      3. 2.2.3 Improving Signal-to-Noise Ratio
      4. 2.2.4 Choose a Suitable Reference Voltage Source
      5. 2.2.5 Software Methods for Reducing Noise
  6. 3ADC Oversampling
    1. 3.1 Sampling Rate
    2. 3.2 Extraction
    3. 3.3 Application Conditions
  7. 4ADC Application Based on MSPM0
    1. 4.1 ADC Configuration of MSPM0
    2. 4.2 ADC DC Test Based on MSPM0G3507 ADC EVM Board
      1. 4.2.1 Software/Hardware Configuration
        1. 4.2.1.1 Hardware
        2. 4.2.1.2 Software
      2. 4.2.2 Test Result
      3. 4.2.3 Result Analysis and Conclusion

Clock Jitter

Clock jitter causes fluctuations in the sampling points used to sample the input signal based on the clock edge, resulting in jitter in the sampled signal value. The higher the signal frequency, the greater the jitter in the sampled value caused by clock jitter. If sampling high-frequency signals, it is necessary to select a clock source with a higher voltage swing rate to shorten the ADC sampling time and reduce the root mean square jitter introduced into the system.