SLLSFC5C November   2021  – January 2023 ISOUSB211

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Power Ratings
    6. 6.6  Insulation Specifications
    7. 6.7  Safety-Related Certifications
    8. 6.8  Safety Limiting Values
    9. 6.9  Electrical Characteristics
    10. 6.10 Switching Characteristics
    11. 6.11 Insulation Characteristics Curves
    12. 6.12 Typical Characteristics
  8. Parameter Measurement Information
    1. 7.1 Test Circuits
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Power Supply Options
      2. 8.3.2  Power Up
      3. 8.3.3  Symmetric Operation, Dual-Role Port and Role-Reversal
      4. 8.3.4  Connect and Speed Detection
      5. 8.3.5  Disconnect Detection
      6. 8.3.6  Reset
      7. 8.3.7  LS/FS Message Traffic
      8. 8.3.8  HS Message Traffic
      9. 8.3.9  Equalization and Pre-emphasis
      10. 8.3.10 L2 Power Management State (Suspend) and Resume
      11. 8.3.11 L1 Power Management State (Sleep) and Resume
      12. 8.3.12 HS Test Mode Support
      13. 8.3.13 CDP Advertising
    4. 8.4 Device Functional Modes
  10. Power Supply Recommendations
  11. 10Application and Implementation
    1. 10.1 Typical Application
      1. 10.1.1 Isolated Host or Hub
      2. 10.1.2 Isolated Peripheral - Self-Powered
      3. 10.1.3 Isolated Peripheral - Bus-Powered
      4. 10.1.4 Application Curve
        1. 10.1.4.1 Insulation Lifetime
    2. 10.2 Meeting USB2.0 HS Eye-Diagram Specifications
    3. 10.3 Thermal Considerations
      1. 10.3.1 VBUS / V3P3V Power
      2. 10.3.2 VCCx / V1P8Vx Power
      3. 10.3.3 Example Configuration 1
      4. 10.3.4 Example Configuration 2
      5. 10.3.5 Example Configuration 3
  12. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Layout Example
      2. 11.1.2 PCB Material
  13. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  14. 13Mechanical, Packaging, and Orderable Information
    1. 13.1 Tape and Reel Information

Example Configuration 2

In the application example shown in Figure 10-8, ISOUSB211 is powered using USB VBUS on the connector side, and a local 3.3-V digital supply on the microcontroller side to generate V3P3Vx. An external LDO or DC-DC buck converter is used to generate V1P8Vx on both sides.

In this scenario, the total power consumption from both sides taken together is:

VBUS1 × IVBUS1 + V1P8V1 × I1P8V1 + V3P3V2 × I3P3V2 + V1P8V2 × I1P8V2

Assuming 5.25 V as the maximum value of VBUS, and 1.89 V as the maximum value of the external 1.8-V power supply, the internal power dissipation is calculated as

5.25 V×13.5 mA + 1.89 V×96 mA + 3.5 V×13.5 mA+1.89 V×96 mA = 481 mW.

Since the junction-to-air thermal resistance is 44.2°C/W, this power dissipation results in a 22°C internal temperature rise. Ambient temperature up to 128°C can be supported for this configuration.

TLV741P and TLV62568 are examples of low-cost LDO and buck converter respectively that may be used in this application. Both options reduce the power dissipation in ISOUSB211. However, the buck converter additionally reduces power dissipation at the system level, and also the current drawn from VBUS and local 3.3-V supplies.

This configuation offers the lowest power dissipation and the highest ambient temperature operation using external regulators.

GUID-20200820-CA0I-QBRP-1VR3-NLXDVQRTZ6XS-low.svgFigure 10-7 Using ISOUSB211 with 1.8-V supplied with External Regulators.