SLLU335A August   2021  – January 2022 MCF8316A

 

  1. 1Revision History
    1.     Trademarks
  2. 2Introduction
    1. 2.1 Hardware and GUI Setup
      1. 2.1.1 Jumper Configuration
      2. 2.1.2 External Connections
      3. 2.1.3 Connecting to the GUI
        1. 2.1.3.1 Connect to computer
        2. 2.1.3.2 Connect to the GUI
        3. 2.1.3.3 Verify Hardware Connection
  3. 3Essential Controls
    1. 3.1 Recommended Default Values
    2. 3.2 Device and Pin Configuration
      1. 3.2.1 Speed Input Mode
    3. 3.3 Control Configuration - Motor Parameters
      1. 3.3.1 Maximum Motor Electrical Speed (Hz)
    4. 3.4 Control configuration - Closed Loop
      1. 3.4.1 Current Limit for Torque PI Loop
    5. 3.5 Testing for Successful Startup into Closed Loop
    6. 3.6 Fault Handling
      1. 3.6.1 MPET IPD Fault [MPET_IPD_Fault]
      2. 3.6.2 MPET BEMF Fault [MPET_BEMF_Fault]
      3. 3.6.3 Abnormal BEMF Fault [ABN_BEMF]
      4. 3.6.4 Lock Current Limit [LOCK_LIMIT]
      5. 3.6.5 Hardware lock Current Limit [HW_LOCK_LIMIT]
      6. 3.6.6 No Motor Fault [NO_MTR]
  4. 4Basic Controls
    1. 4.1 Device and Pin Configuration
      1. 4.1.1 Power Saver or Sleep Mode for Battery Operated Applications
      2. 4.1.2 Direction and Brake Pin Override
    2. 4.2 System Level Configuration
      1. 4.2.1 Tracking Motor Speed Feedback in Real Time
      2. 4.2.2 Improving Acoustic Performance
      3. 4.2.3 Protecting the Power supply
      4. 4.2.4 Monitoring Power Supply Voltage Fluctuations for Normal Motor Operation
    3. 4.3 Control Configurations
      1. 4.3.1  Motor Parameter Estimation to Minimize Motor Parameter Variation Effects
      2. 4.3.2  Initial Speed Detection of the Motor for Reliable Motor Resynchronization
      3. 4.3.3  Unidirectional Motor Drive Detecting Backward Spin
      4. 4.3.4  Preventing Back Spin of Rotor During Startup
      5. 4.3.5  Faster Startup Timing
      6. 4.3.6  Gradual and Smooth Start up Motion
      7. 4.3.7  Improving Speed Regulation
      8. 4.3.8  Stopping Motor Quickly
      9. 4.3.9  Preventing Supply Voltage Overshoot During Motor Stop.
      10. 4.3.10 Protecting Against Rotor Lock or Stall Condition
      11. 4.3.11 Maximizing Thermal Efficiency and Increasing Thermal Performance
      12. 4.3.12 Mitigating Electromagnetic Interference (EMI)
      13. 4.3.13 Faster deceleration

Abnormal BEMF Fault [ABN_BEMF]

This fault gets triggered when the estimated BEMF voltage drops below the programmed Abnormal BEMF threshold % [ABNNORMAL_BEMF_THR] of the programmed or MPET estimated BEMF constant Ke [MOTOR_BEMF_CONST] which is programmed as 40% (default value). For example, if the estimated /measured Ke is 5 mV/Hz and programmed Abnormal BEMF threshold is 40%, this fault gets triggered when the estimated Ke drops below 2 mV/Hz. This fault can also get triggered when the programmed Ke is inaccurate.

Step 1: Estimated BEMF voltage drops when the motor speed drops. Motor speed can drop due to load dynamics (sudden change in load). For applications with load dynamics, we expect speed to drop and recover back. Because the speed drops, the BEMF voltage will also drop and can trigger this fault. For such applications, it is recommended to set the Abnormal BEMF threshold to 10% to avoid triggering this fault.

Step 2: This fault can get triggered if the programmed Ke is inaccurate. Follow steps recommended in Section 3.6.2 to obtain accurate Ke.