SLOA101B August 2002 – May 2016 SN55HVD233-SEP , SN65HVDA1040A-Q1 , SN65HVDA1050A-Q1 , SN65HVDA540-5-Q1 , SN65HVDA540-Q1 , SN65HVDA541-5-Q1 , SN65HVDA541-Q1 , SN65HVDA542-5-Q1 , SN65HVDA542-Q1
A controller area network (CAN) is ideally suited to the many high-level industrial protocols embracing CAN and ISO-11898:2003 as their physical layer. Its cost, performance, and upgradeability provide for tremendous flexibility in system design. This application report presents an introduction to the CAN fundamentals, operating principles, and the implementation of a basic CAN bus with TI's CAN transceivers and DSPs. The electrical layer requirements of a CAN bus are discussed along with the importance of the different features of a TI CAN transceiver.
CANopen is a trademark of CAN in Automation.
DeviceNet is a trademark of Open DeviceNet Vendor Association, Inc.
The CAN bus was developed by BOSCH (1) as a multi-master, message broadcast system that specifies a maximum signaling rate of 1 megabit per second (bps). Unlike a traditional network such as USB or Ethernet, CAN does not send large blocks of data point-to-point from node A to node B under the supervision of a central bus master. In a CAN network, many short messages like temperature or RPM are broadcast to the entire network, which provides for data consistency in every node of the system.
Once CAN basics such as message format, message identifiers, and bit-wise arbitration -- a major benefit of the CAN signaling scheme are explained, a CAN bus implementation is examined, typical waveforms presented, and transceiver features examined.
CAN is an International Standardization Organization (ISO) defined serial communications bus originally developed for the automotive industry to replace the complex wiring harness with a two-wire bus. The specification calls for high immunity to electrical interference and the ability to self-diagnose and repair data errors. These features have led to CAN’s popularity in a variety of industries including building automation, medical, and manufacturing.
The CAN communications protocol, ISO-11898: 2003, describes how information is passed between devices on a network and conforms to the Open Systems Interconnection (OSI) model that is defined in terms of layers. Actual communication between devices connected by the physical medium is defined by the physical layer of the model. The ISO 11898 architecture defines the lowest two layers of the seven layer OSI/ISO model as the data-link layer and physical layer in Figure 1.
In Figure 1, the application layer establishes the communication link to an upper-level application specific protocol such as the vendor-independent CANopen™ protocol. This protocol is supported by the international users and manufacturers group, CAN in Automation (CiA). Additional CAN information is located at the CiA Web site, can-cia.de. Many protocols are dedicated to particular applications like industrial automation, diesel engines, or aviation. Other examples of industry-standard, CAN-based protocols are KVASER's CAN Kingdom and Rockwell Automation's DeviceNet™.