SLOA101B August   2002  – May 2016 SN55HVD233-SEP , SN65HVDA1040A-Q1 , SN65HVDA1050A-Q1 , SN65HVDA540-5-Q1 , SN65HVDA540-Q1 , SN65HVDA541-5-Q1 , SN65HVDA541-Q1 , SN65HVDA542-5-Q1 , SN65HVDA542-Q1

 

  1.   Introduction to the Controller Area Network (CAN)
    1.     Trademarks
    2. 1 Introduction
    3. 2 The CAN Standard
    4. 3 Standard CAN or Extended CAN
      1. 3.1 The Bit Fields of Standard CAN and Extended CAN
        1. 3.1.1 Standard CAN
        2. 3.1.2 Extended CAN
    5. 4 A CAN Message
      1. 4.1 Arbitration
      2. 4.2 Message Types
        1. 4.2.1 The Data Frame
        2. 4.2.2 The Remote Frame
        3. 4.2.3 The Error Frame
        4. 4.2.4 The Overload Frame
      3. 4.3 A Valid Frame
      4. 4.4 Error Checking and Fault Confinement
    6. 5 The CAN Bus
      1. 5.1 CAN Transceiver Features
        1. 5.1.1  3.3-V Supply Voltage
        2. 5.1.2  ESD Protection
        3. 5.1.3  Common-Mode Voltage Operating Range
        4. 5.1.4  Common-Mode Noise Rejection
        5. 5.1.5  Controlled Driver Output Transition Times
        6. 5.1.6  Low-Current Bus Monitor, Standby and Sleep Modes
        7. 5.1.7  Bus Pin Short-Circuit Protection
        8. 5.1.8  Thermal Shutdown Protection
        9. 5.1.9  Bus Input Impedance
        10. 5.1.10 Glitch-Free Power Up and Power Down
        11. 5.1.11 Unpowered Node Protection
        12. 5.1.12 Reference Voltage
        13. 5.1.13 V-Split
        14. 5.1.14 Loopback
        15. 5.1.15 Autobaud Loopback
      2. 5.2 CAN Transceiver Selection Guide
    7. 6 Conclusion
    8. 7 Additional Reading
  2.   Revision History

V-Split

V-split is a fortified Vcc/2 Vref pin with the same ESD protection rating, short-circuit protection, and common-mode operating range as the bus pins. It is used to stabilize bus voltage at Vcc/2 and prevent it from drifting to a high common-mode voltage during periods of inactivity.

It also filters unwanted high-frequency noise from bus lines with the termination technique of Figure 12. This is accomplished with a coupling capacitor between two ~60 Ω ±1% termination resistors to couple high-frequency noise to a solid ground potential. Care must be taken to match the two resistors carefully so as not to reduce the effective immunity. This technique improves the electromagnetic compatibility of a network. A typical value of CL for a high-speed CAN is 4.7 nF, which generates a 3-dB point at 1.1 Mbps. This, of course, is a signaling-rate-dependant value.

splttrm_loa101.gifFigure 12. Split Termination