SLOA284A january   2020  – may 2023 AFE5832 , AFE5832LP , ISO7741 , ISOW7841 , LM25037 , LM25180 , LM5180 , LM5181 , LM5181-Q1 , TX7316 , TX7332

 

  1.   1
  2.   Designing Bipolar High Voltage SEPIC Supply for Ultrasound Smart Probe
  3.   Trademarks
  4. 1Introduction
    1. 1.1 Key Design Challenges
    2. 1.2 Potential Topologies for Generating High Voltage Supply
  5. 2Design of high voltage circuit using SEPIC topology
    1. 2.1 TI HV Supply Architecture Using SEPIC Topology
  6. 3Test Results
    1. 3.1 Efficiency and Load Regulation
    2. 3.2 Output Ripple Measurement
    3. 3.3 Load Transient Test
    4. 3.4 Noise Measurement
    5. 3.5 Thermal Performance
  7. 4Possible Variants of the Design
    1. 4.1 Option 1: Programmable Output Voltage
    2. 4.2 Option 2: Support Input From 1S Li-Ion Battery
    3. 4.3 Option 3: Output Voltage Up to ±100 V
  8. 5Layout Guidelines
  9. 6Clock Synchronization
  10. 7Summary
  11. 8References
  12. 9Revision History

Output Ripple Measurement

Figure 3-3 and Figure 3-5 shows the output ripple of the high voltage circuit of both negative and positive rail at full load, respectively. The ripple is measured at the output capacitor before the π filter, the peak to peak ripple is close to 25 mV. Figure 3-4 and Figure 3-6 shows the ripple measured after the Power Filter, which is significantly attenuated.

GUID-47B41D49-ED67-4A8C-B4E2-5C6AC7CCB380-low.pngFigure 3-3 Output Ripple of Negative Rail Before Power Filter
GUID-151BF8D0-0944-4ECF-BA45-FCD55FFD3D9F-low.pngFigure 3-5 Output Ripple of Positive Rail Before Power Filter
GUID-0E04B738-05E1-40B8-B8BB-5C5ABB299412-low.pngFigure 3-4 Output Ripple of Negative Rail After Power Filter
GUID-69732396-F1B8-4876-946F-58F7FEAB7406-low.pngFigure 3-6 Output Ripple of Positive Rail After Power Filter