SLOSEC9 September   2024 TSD5402-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements for I2C Interface Signals
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Analog Input and Preamplifier
      2. 6.3.2 Pulse-Width Modulator (PWM)
      3. 6.3.3 Gate Drive
      4. 6.3.4 Power FETs
      5. 6.3.5 Load Diagnostics
        1. 6.3.5.1 Load Diagnostics Sequence
        2. 6.3.5.2 Faults During Load Diagnostics
      6. 6.3.6 Protection and Monitoring
      7. 6.3.7 I2C Serial Communication Bus
        1. 6.3.7.1 I2C Bus Protocol
        2. 6.3.7.2 Random Write
        3. 6.3.7.3 Random Read
        4. 6.3.7.4 Sequential Read
    4. 6.4 Device Functional Modes
      1. 6.4.1 Hardware Control Pins
      2. 6.4.2 EMI Considerations
      3. 6.4.3 Operating Modes and Faults
  8. Register Maps
    1. 7.1 I2C Address Register Definitions
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
        1. 8.2.1.1 Amplifier Output Filtering
        2. 8.2.1.2 Amplifier Output Snubbers
        3. 8.2.1.3 Bootstrap Capacitors
        4. 8.2.1.4 Analog Signal Input Filter
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Unused Pin Connections
          1. 8.2.2.1.1 HI-Z Pin
          2. 8.2.2.1.2 STANDBY Pin
          3. 8.2.2.1.3 I2C Pins (SDA and SCL)
          4. 8.2.2.1.4 Terminating Unused Outputs
          5. 8.2.2.1.5 Using a Single-Ended Signal Input
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Examples
        1. 8.4.2.1 Top Layer
        2. 8.4.2.2 Second Layer – Signal Layer
        3. 8.4.2.3 Third Layer – Power Layer
        4. 8.4.2.4 Bottom Layer – Ground Layer
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Package Option Addendum
      1. 11.1.1 Packaging Information
      2. 11.1.2 Tape and Reel Information

I2C Bus Protocol

The device has a bidirectional serial control interface that is compatible with the Inter IC (I2C) bus protocol and supports 400kbps data transfer rates for random and sequential write and read operations. This is a target-only device that does not support a multicontroller bus environment or wait-state insertion. The controller device uses the I2C control interface to program the registers of the device and to read device status.

The I2C bus employs two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a system. Data transfer on the bus is serial, one bit at a time. The transfer of address and data is in byte (8-bit) format with the most-significant bit (MSB) transferred first. In addition, the receiving device acknowledges each byte transferred on the bus with an acknowledge bit. Each transfer operation begins with the controller device driving a start condition on the bus and ends with the controller device driving a stop condition on the bus. The bus uses transitions on the data pin (SDA) while the clock is HIGH to indicate start and stop conditions. A HIGH-to-LOW transition on SDA indicates a start, and a LOW-to-HIGH transition indicates a stop. Normal data bit transitions must occur within the low time of the clock period. Figure 6-4 shows these conditions. The controller generates the 7-bit target address and the read/write (R/ W) bit to open communication with another device and then waits for an acknowledge condition. The device holds SDA LOW during the acknowledge clock period to indicate an acknowledgment. When this occurs, the controller transmits the next byte of the sequence. The address for each device is a unique 7-bit target address plus a R/ W bit (1 byte). All compatible devices share the same signals via a bidirectional bus using a wired-AND connection. The SDA and SCL signals require the use of an external pullup resistor to set the HIGH level for the bus. There is no limit on the number of bytes that the communicating devices can transmit between start and stop conditions. After transfer of the last word, the controller generates a stop condition to release the bus.

TSD5402-Q1 Typical I2C SequenceFigure 6-4 Typical I2C Sequence

To communicate with the device, the I2C controller uses addresses shown in Figure 6-4. Transmission of read and write data can be by single-byte or multiple-byte data transfers.