SLVAF95 april   2023 TPS7H5001-SP

 

  1.   Abstract
  2.   Trademarks
  3.   Description
  4.   Features
  5.   Applications
  6. 1System Overview
    1. 1.1 Block Diagram
    2. 1.2 Design Considerations
    3. 1.3 System Design Theory
      1. 1.3.1 Switching Frequency
      2. 1.3.2 Transformer
      3. 1.3.3 RCD and Diode Clamp
      4. 1.3.4 Output Diode and MOSFET
      5. 1.3.5 Output Filter and Capacitance
      6. 1.3.6 Compensation
      7. 1.3.7 Controller Passives
  7. 2Test Results
    1. 2.1 Testing and Results
      1. 2.1.1 Test Setup
      2. 2.1.2 Test Results
        1. 2.1.2.1 Efficiency
        2. 2.1.2.2 Frequency Response
        3. 2.1.2.3 Thermal Characteristics
        4. 2.1.2.4 Output Voltage Ripple
        5. 2.1.2.5 Load Step
        6. 2.1.2.6 Start-Up
        7. 2.1.2.7 Shutdown
        8. 2.1.2.8 Component Stresses
  8. 3Design Files
    1. 3.1 Schematics
    2. 3.2 Bill of Materials
    3. 3.3 Assembly Drawings
  9. 4Related Documentation

Output Diode and MOSFET

The voltage stress by the converter on the diode or MOSFET on the secondary side is found with Equation 17 and Equation 18.

Equation 17. V S e c S t r e s s = V o u t + V i n N p s
Equation 18. V S e c S t r e s s = 5   V + 28   V 2 . 67 = 15 V

Any diode selected needs a voltage rating of well above this value because it does not include parasitic spikes in the equation. The UC1843-SP diode was picked to have a voltage rating of 45 V.