SLVAFJ8 may   2023 TPS7H5001-SP

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2System Design Theory
    1. 2.1  Switching Frequency
    2. 2.2  Leading Edge Blanking
    3. 2.3  Dead Time
    4. 2.4  Enable and UVLO
    5. 2.5  Output Voltage Programing
    6. 2.6  Soft Start
    7. 2.7  Sensing Circuit
    8. 2.8  FAULT Mode
    9. 2.9  HICCUP Mode
    10. 2.10 Slope Compensation
    11. 2.11 Output Capacitance
    12. 2.12 Compensation
  6. 3Test Results
  7. 4Bill of Materials
  8. 5Schematics
  9. 6PCB Layouts
  10. 7References

Test Results

GUID-20230331-SS0I-DZN5-JLW9-2JSVHNFBVLDM-low.svg Figure 3-1 Efficiency vs. Current
GUID-20230331-SS0I-TVMC-9RLD-KNN5K1TGQ6HC-low.png Figure 3-2 Start-up Loaded (30 A)

Figure 3-2 shows start-up of the converter when unloaded.

GUID-20230331-SS0I-CLFW-VJ5N-LMCZXJL5V4MZ-low.png Figure 3-3 Shutdown

Figure 3-3 shows shutdown of the converter when loaded with 30 A on the output current.

GUID-20230331-SS0I-VXGJ-SJVD-KFRWNBBLCXWX-low.png Figure 3-4 Voltage Transient

Figure 3-4 shows the output voltage dip of the converter to a 33 A output current transient. The output current is measured across a 0.01 Ohm resistor that a FET is pulsing the current through.

GUID-20230331-SS0I-90LZ-LCNK-CJ5J6QHKTTPL-low.jpg Figure 3-5 Thermal Image of Board with 80 A Output Current

Figure 3-5 shows the thermal image of the board with 80 A of output current.

GUID-20230331-SS0I-1CDS-QPT2-TWFVGZ825MBF-low.png Figure 3-6 Switch Node Voltage with Full Output Current

Figure 3-6 shows the maximum voltage on the switch node of the converter with an output current of 80 A.