SLVS930C December   2009  – October 2020 TPS2560 , TPS2561

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 ESD Ratings: Surge
    4. 7.4 Recommended Operating Conditions
    5. 7.5 Thermal Information
    6. 7.6 Electrical Characteristics
    7. 7.7 Dissipation Ratings
    8. 7.8 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Overcurrent Conditions
      2. 9.3.2 FAULTx Response
      3. 9.3.3 Undervoltage Lockout (UVLO)
      4. 9.3.4 Enable ( ENx or ENx)
      5. 9.3.5 Thermal Sense
    4. 9.4 Device Functional Modes
  10. 10Power Supply Recommendations
    1. 10.1 Self-Powered and Bus-Powered Hubs
    2. 10.2 Low-Power Bus-Powered and High-Power Bus-Powered Functions
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Power Dissipation
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Receiving Notification of Documentation Updates
    2. 12.2 Support Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Layout Guidelines

  • Place the 100-nF bypass capacitor near the IN and GND pins, and make the connections using a low-inductance trace
  • Place a high-value electrolytic capacitor and a 100-nF bypass capacitor on the output pin is recommended when large transient currents are expected on the output
  • The traces routing the RILIM resistor to the device should be as short as possible to reduce parasitic effects on the current limit accuracy
  • The thermal pad should be directly connected to PCB ground plane using wide and short copper trace