SLVSB97E July   2012  – January 2018 TPS23751 , TPS23752

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1. 3.1 Typical Application Circuit
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 ESD Ratings: Surge
    4. 6.4 Recommended Operating Conditions
    5. 6.5 Thermal Information
    6. 6.6 Electric Characteristics - Controller Section
    7. 6.7 Electrical Characteristics - Sleep Mode (TPS23752 Only)
    8. 6.8 Electrical Characteristics - PoE Interface Section
    9. 6.9 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagrams
    3. 7.3 Feature Description
      1. 7.3.1 Pin Description
    4. 7.4 Device Functional Modes
      1. 7.4.1 PoE Overview
        1. 7.4.1.1 Threshold Voltages
        2. 7.4.1.2 PoE Startup Sequence
        3. 7.4.1.3 Detection
        4. 7.4.1.4 Hardware Classification
        5. 7.4.1.5 Inrush and Startup
        6. 7.4.1.6 Maintain Power Signature
        7. 7.4.1.7 Startup and Converter Operation
        8. 7.4.1.8 PD Hotswap Operation
      2. 7.4.2 Sleep Mode Operation (TPS23752 only)
        1. 7.4.2.1  Converter Controller Features
        2. 7.4.2.2  PWM and VFO Operation; CTL, SRT, and SRD Pin Relationships to Output Load Current
        3. 7.4.2.3  Bootstrap Topology
        4. 7.4.2.4  Current Slope Compensation and Current Limit
        5. 7.4.2.5  RT
        6. 7.4.2.6  T2P, Startup and Power Management
        7. 7.4.2.7  Thermal Shutdown
        8. 7.4.2.8  Adapter ORing
        9. 7.4.2.9  Using DEN to Disable PoE
        10. 7.4.2.10 ORing Challenges
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Input Bridges and Schottky Diodes
        2. 8.2.2.2  Protection, D1
        3. 8.2.2.3  Capacitor, C1
        4. 8.2.2.4  Detection Resistor, RDEN
        5. 8.2.2.5  Classification Resistor, RCLS
        6. 8.2.2.6  APD Pin Divider Network, RAPD1, RAPD2
        7. 8.2.2.7  Setting the PWM-VFO Threshold using the SRT pin
        8. 8.2.2.8  Setting Frequency (RT)
        9. 8.2.2.9  Current Slope Compensation
        10. 8.2.2.10 Voltage Feed-Forward Compensation
        11. 8.2.2.11 Estimating Bias Supply Requirements and Cvc
        12. 8.2.2.12 Switching Transformer Considerations and RVC
        13. 8.2.2.13 T2P Pin Interface
        14. 8.2.2.14 Softstart
        15. 8.2.2.15 Special Switching MOSFET Considerations
        16. 8.2.2.16 ESD
        17. 8.2.2.17 Thermal Considerations and OTSD
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
      2. 11.1.2 Related Links
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Estimating Bias Supply Requirements and Cvc

The bias supply (VC) power requirements determine CVC sizing and hiccup frequency during a fault. The first step is to determine the power and current requirements of the power supply control circuitry, then select CVC. The following example assumes that control current draw is constant with voltage with no loading by the feedback and T2P optocouplers to simplify the process:

  1. Let VQG be the gate voltage swing that the MOSFET QG is rated to (often 10 V).
  2. Equation 6. TPS23751 TPS23752 EQ6_lvsb97.gif

    Compute gate drive power if VC is 12 V and QGATE is 17 nC

    Equation 7. TPS23751 TPS23752 EQ7_lvsb97.gif

    This equation illustrates why MOSFET QG should be an important consideration in selecting the switching MOSFETs.

  3. Estimate the required bias current at some intermediate voltage during the CVC discharge. For the TPS23751 and TPS23752, 12 V provides a reasonable estimate. Add the operating bias current to the gate drive current.
  4. Equation 8. TPS23751 TPS23752 EQ8_lvsb97.gif
  5. Compute the required CVC based on startup within the typical softstart delay of 3.01 ms.
  6. Equation 9. TPS23751 TPS23752 EQ9_lvsb97.gif
  7. Choose a 10 μF electrolytic and 0.47 μF ceramic capacitor each rated for 16 V (minimum). Compute the initial time to start the converter when operating from PoE. Using a typical bootstrap current of 1.5 mA, compute the time to startup.
  8. Equation 10. TPS23751 TPS23752 EQ10_lvsb97.gif
  9. Compute the fault duty cycle and hiccup frequency
  10. Equation 11. TPS23751 TPS23752 EQ11_lvsb97.gif
    Equation 12. TPS23751 TPS23752 EQ12_lvsb97.gif
    Equation 13. TPS23751 TPS23752 EQ13_lvsb97.gif
    Equation 14. TPS23751 TPS23752 EQ14_lvsb97.gif