SLVSFT8F February   2023  – December 2023 TPS7H1111-SEP , TPS7H1111-SP

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Options Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Quality Conformance Inspection
    7. 6.7 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Bias Supply
      2. 8.3.2  Output Voltage Configuration
      3. 8.3.3  Output Voltage Configuration with a Voltage Source
      4. 8.3.4  Enable
      5. 8.3.5  Soft Start and Noise Reduction
      6. 8.3.6  Configurable Power Good
      7. 8.3.7  Current Limit
      8. 8.3.8  Stability
        1. 8.3.8.1 Output Capacitance
        2. 8.3.8.2 Compensation
      9. 8.3.9  Current Sharing
      10. 8.3.10 PSRR
      11. 8.3.11 Noise
      12. 8.3.12 Thermal Shutdown
    4. 8.4 Device Functional Modes
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Application 1: Set Turn-On Threshold with EN
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Bias Supply
          2. 9.2.1.2.2 Output Voltage Configuration
          3. 9.2.1.2.3 Output Voltage Accuracy
          4. 9.2.1.2.4 Enable Threshold
          5. 9.2.1.2.5 Soft Start and Noise Reduction
          6. 9.2.1.2.6 Configurable Power Good
          7. 9.2.1.2.7 Current Limit
          8. 9.2.1.2.8 Output Capacitor and Ferrite Bead
        3. 9.2.1.3 Application Curve
      2. 9.2.2 Application 2: Parallel Operation
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
          1. 9.2.2.2.1 Current Sharing
        3. 9.2.2.3 Application Results
    3. 9.3 Capacitors Tested
    4. 9.4 TID Effects
    5. 9.5 Power Supply Recommendations
    6. 9.6 Layout
      1. 9.6.1 Layout Guidelines
      2. 9.6.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Third-Party Products Disclaimer
      2. 10.1.2 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Output Voltage Configuration with a Voltage Source

Since the TPS7H1111 output voltage is equal to the SS_SET voltage (minus any offset error), it is also possible to configure the TPS7H1111 by providing a voltage on SS_SET. As shown in Figure 8-2, a voltage source, VSET, is fed to SS_SET. A DAC can be used as the voltage source to enable a configurable voltage control.

GUID-20230106-SS0I-LNW3-CMMC-DPTSFJ5N0VDQ-low.svg Figure 8-2 Simplified Schematic to Configure Output Voltage with a Voltage Source on SS_SET

A few unique considerations should be taken into account when using this method:

  • When a voltage source is provided on SS_SET, instead of relying on the ultra-low noise reference current, the noise of VSET is passed to the output through the unity gain error amplifier. It may be advisable to use an RC filter between VSET and SS_SET as shown to minimize noise.
  • Since the TPS7H1111 output voltage directly follows SS_SET, there will be no soft-start during startup. It is recommended to control the VSET voltage slew rate to ensure desired soft-start time. An RC filter between VSET and the SS_SET may help with this slew rate control.
  • The SS_SET pin will output a nominal 100 μA during operation and 2.1 mA during "soft-start" (when VFB_PG < VFB_PG(rising)). In order to handle this current, a shunt resistor may be required.