SNLA466A August   2024  – October 2024 DP83822I , DP83826E , DP83826I , DP83867E , DP83867IR , DP83869HM

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Abbreviation
  5. 2Introduction
  6. 3EMC Emission
    1. 3.1 Radiated Emission
      1. 3.1.1 Test Setup for Radiated Emission Test
      2. 3.1.2 Main Radiated Emission Sources
    2. 3.2 Conducted Emission
      1. 3.2.1 Test Setup for Conducted Emission Test
      2. 3.2.2 Main Conducted Emission Sources
    3. 3.3 Debug Procedure on EMC Emission
      1. 3.3.1 General Debug Procedure
      2. 3.3.2 RE Specific Debug
      3. 3.3.3 CE Specific Debug
  7. 4EMC Immunity Test
    1. 4.1 EMI Passing Criteria
    2. 4.2 Common EMI Knowledge
    3. 4.3 IEC61000 4-2 ESD
      1. 4.3.1 ESD Test Setup
      2. 4.3.2 Possible Root Cause of Failure
      3. 4.3.3 Debug Procedure
        1. 4.3.3.1 Follow the Test Setup
        2. 4.3.3.2 Remove External Factors on Cable or Link Partner
        3. 4.3.3.3 Areas to Explore to Improve ESD Performance
          1. 4.3.3.3.1 Air or Capacitive Coupling Discharge ESD Recommendations
          2. 4.3.3.3.2 Direct Contact Discharge ESD Recommendation
        4. 4.3.3.4 Schematic and Layout Recommendations
    4. 4.4 IEC 61000 4-3 RI
      1. 4.4.1 RI Test Setup
      2. 4.4.2 Possible Root Cause of Failure
      3. 4.4.3 Debug Procedure
        1. 4.4.3.1 Follow RI Test Setup
        2. 4.4.3.2 Remove External Factor on Cable or Link Partner
        3. 4.4.3.3 Found out Main Emission Area
        4. 4.4.3.4 Schematic and Layout Recommendation
    5. 4.5 IEC 61000 4-4 EFT
      1. 4.5.1 EFT Test Setup
      2. 4.5.2 Possible Root Cause of Failure
      3. 4.5.3 Debug Procedure
        1. 4.5.3.1 Follow EFT Test Setup
        2. 4.5.3.2 Remove External Factor on Cable or Link Parnter
        3. 4.5.3.3 Areas to Explore to Improve EFT Performance
        4. 4.5.3.4 Schematic and Layout Recommendation
    6. 4.6 IEC 61000 4-5 Surge
      1. 4.6.1 Surge Test Setup
      2. 4.6.2 Possible Root Cause of Failure
      3. 4.6.3 Debug Procedure
        1. 4.6.3.1 Follow Surge Test Setup
        2. 4.6.3.2 Remove External Factor on Cable or Link Partner
        3. 4.6.3.3 Area to Explore to Improve Surge Performance
        4. 4.6.3.4 Schematic and Layout Recommendation
    7. 4.7 IEC 61000 4-6 CI
      1. 4.7.1 CI Test Setup
      2. 4.7.2 Possible Root Cause of Failure
      3. 4.7.3 Debug Procedure
        1. 4.7.3.1 Follow CI Test Setup
        2. 4.7.3.2 Remove External Factors on Cable or Link Partner
        3. 4.7.3.3 Areas to Explore to Improve CI Performance
        4. 4.7.3.4 Schematic and Layout Recommendation
  8. 5Schematic and Layout Recommendation for All EMC, EMI Tests
    1. 5.1 Schematic Recommendation
    2. 5.2 Layout Recommendation
  9. 6Summary
  10. 7References
  11. 8Revision History

Follow the Test Setup

  • Confirm the earth ground connection of the ESD test setup
    • Verify the ESD gun is properly connected to earth ground
    • Verify the power supply is connected to earth ground
    • Verify table ground is properly connected to earth ground through a 1MOhm termination
  • Verify there is a connection between connector ground and earth ground on both DUT and LP boards
    • Provide a return path for each ESD strike to flow to earth ground, preventing the connector ground from capacitively charging. Without a good return path for ESD noise, the connector ground can gain charge and worsen ESD performance. This is also dangerous for ESD testing, as significant charge can build and discharge to testers.
     Low Impedance Ground
                            Path Figure 4-4 Low Impedance Ground Path
    • If the application prevents the RJ45 shield from connecting to earth ground, the recommendation is to connect the shield to a metal or conducted case (bigger conducted area) to provide a better radiated path for ESD noise to flow
  • Verify the PHYs, power supply, and Ethernet cable are placed on top of the insulator
    • This prevents noise from earth ground directly interfering with the system
  • Use a shielded cable for improved EMI performance
    • CAT6 cables have better performance than CAT 5E cables