SNLS474E February   2015  – June 2018 LMH1218

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified SPI Schematic
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Descriptions – SPI Mode/ Mode_SEL = 1 kΩ to VDD
    2.     Pin Descriptions – SMBUS Mode/ MODE_SEL = 1 kΩ to GND
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Recommended SMBus Interface AC Timing Specifications
    7. 6.7 Serial Parallel Interface (SPI) Bus Interface AC Timing Specifications
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Loss of Signal Detector
      2. 7.3.2 Continuous Time Linear Equalizer (CTLE)
      3. 7.3.3 2:1 Multiplexer
      4. 7.3.4 Clock and Data Recovery
      5. 7.3.5 Eye Opening Monitor (EOM)
      6. 7.3.6 Fast EOM
        1. 7.3.6.1 SMBus Fast EOM Operation
        2. 7.3.6.2 SPI Fast EOM Operation
      7. 7.3.7 LMH1218 Device Configuration
        1. 7.3.7.1 MODE_SEL
        2. 7.3.7.2 ENABLE
        3. 7.3.7.3 LOS_INT_N
        4. 7.3.7.4 LOCK
        5. 7.3.7.5 SMBus MODE
        6. 7.3.7.6 SMBus READ/WRITE Transaction
        7. 7.3.7.7 SPI Mode
          1. 7.3.7.7.1 SPI READ/WRITE Transaction
          2. 7.3.7.7.2 SPI Write Transaction Format
          3. 7.3.7.7.3 SPI Read Transaction Format
        8. 7.3.7.8 SPI Daisy Chain
          1. 7.3.7.8.1 SPI Daisy Chain Write Example
          2. 7.3.7.8.2 SPI Daisy Chain Write Read Example
            1. 7.3.7.8.2.1 SPI Daisy Chain Length of Daisy Chain Illustration
      8. 7.3.8 Power-On Reset
    4. 7.4 Device Functional Modes
    5. 7.5 Programming
    6. 7.6 Register Maps
      1. 7.6.1 Global Registers
      2. 7.6.2 Receiver Registers
      3. 7.6.3 CDR Registers
      4. 7.6.4 Transmitter Registers
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 General Guidance for All Applications
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Do's and Don'ts
    4. 8.4 Initialization Set Up
      1. 8.4.1 Selective Data Rate Lock
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 Solder Profile
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Eye Opening Monitor (EOM)

The LMH1218 has an on-chip eye opening monitor (EOM) which can be used to analyze, monitor, and diagnose the performance of the link. The EOM operates on the post-equalized waveform, just prior to the data sampler. Therefore, it captures the effects of all the equalization circuits within the receiver before the data is reclocked. The EOM is operational for 1.485 Gbps and higher data rates.

The EOM monitors the post-equalized waveform in a time window that spans one unit intervals and a configurable voltage range that spans up to ±400 mV differential. The time window and voltage range are divided into 64 steps, so the result of the eye capture is a 64 × 64 matrix of “hits,” where each point represents a specific voltage and phase offset relative to the main data sampler. The number of “hits” registered at each point needs to be taken in context with the total number of bits observed at that voltage and phase offset in order to determine the corresponding probability for that point. The number of bits observed at each point is configurable.

A common measurement performed by the EOM is the horizontal and vertical eye opening. The horizontal eye opening (HEO) represents the width of the post-equalized eye at 0-V differential amplitude, measured in unit intervals or picoseconds. The vertical eye opening (VEO) represents the height of the post-equalized eye, measured midway between the mean zero crossing of the eye. This position in time approximates the CDR sampling phase.

The resulting 64 × 64 matrix produced by the EOM can be processed by software and visualized in a number of ways. Two common ways to visualize this data are shown in Figure 7 and Figure 8. These diagrams depict examples of eye monitor plot implemented by software. The first plot is an example of using the EOM data to plot a basic eye using ASCII character, which can be useful for simple diagnostics software. The second plot shows the first derivative of the EOM data, revealing the density of hits and the actual waveforms and crossing that comprise the eye.