SNVSAI4B November   2017  – November 2020 LM5145

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
    1. 6.1 Wettable Flanks
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Switching Characteristics
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Input Range (VIN)
      2. 8.3.2  Output Voltage Setpoint and Accuracy (FB)
      3. 8.3.3  High-Voltage Bias Supply Regulator (VCC)
      4. 8.3.4  Precision Enable (EN/UVLO)
      5. 8.3.5  Power Good Monitor (PGOOD)
      6. 8.3.6  Switching Frequency (RT, SYNCIN)
        1. 8.3.6.1 Frequency Adjust
        2. 8.3.6.2 Clock Synchronization
      7. 8.3.7  Configurable Soft Start (SS/TRK)
        1. 8.3.7.1 Tracking
      8. 8.3.8  Voltage-Mode Control (COMP)
      9. 8.3.9  Gate Drivers (LO, HO)
      10. 8.3.10 Current Sensing and Overcurrent Protection (ILIM)
      11. 8.3.11 OCP Duty Cycle Limiter
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown Mode
      2. 8.4.2 Standby Mode
      3. 8.4.3 Active Mode
      4. 8.4.4 Diode Emulation Mode
      5. 8.4.5 Thermal Shutdown
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Design and Implementation
      2. 9.1.2 Power Train Components
        1. 9.1.2.1 Inductor
        2. 9.1.2.2 Output Capacitors
        3. 9.1.2.3 Input Capacitors
        4. 9.1.2.4 Power MOSFETs
      3. 9.1.3 Control Loop Compensation
      4. 9.1.4 EMI Filter Design
    2. 9.2 Typical Applications
      1. 9.2.1 Design 1 – 20-A High-Efficiency Synchronous Buck Regulator for Telecom Power Applications
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Custom Design With WEBENCH® Tools
        4. 9.2.1.4 Application Curves
      2. 9.2.2 Design 2 – High Density, 12-V, 10-A Rail With LDO Low-Noise Auxiliary Output for RF Power Applications
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
        3. 9.2.2.3 Application Curves
      3. 9.2.3 Design 3 – 150-W, Regulated 24-V Rail for Commercial Drone Applications With Output Voltage Tracking Feature
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedure
        3. 9.2.3.3 Application Curves
      4. 9.2.4 Design 4 – Powering a Multicore DSP From a 24-V or 48-V Rail
        1. 9.2.4.1 Design Requirements
        2. 9.2.4.2 Detailed Design Procedure
        3. 9.2.4.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Power Stage Layout
      2. 11.1.2 Gate Drive Layout
      3. 11.1.3 PWM Controller Layout
      4. 11.1.4 Thermal Design and Layout
      5. 11.1.5 Ground Plane Design
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
      2. 12.1.2 Development Support
      3. 12.1.3 Custom Design With WEBENCH® Tools
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
        1. 12.2.1.1 PCB Layout Resources
        2. 12.2.1.2 Thermal Design Resources
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Support Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Detailed Design Procedure

The design procedure for an LM5145-based regulator for a given application is streamlined by using the LM5145 Quickstart Calculator available as a free download, or by availing of TI's WEBENCH® Power Designer. Such tools are complemented by the availability of an LM5145 evaluation module (EVM) design, numerous PSPICE models, as well as several LM5145 reference designs populated in the TI Designs reference design library.

The selected buck converter powertrain components are cited in Table 9-6, and many of the components are available from multiple vendors. The MOSFETs in particular are chosen for both lowest conduction and switching power loss, as discussed in detail in Section 9.1.2.4.

The current limit setpoint in this design is set at 25 A based on the resistor RILIM and the 4-mΩ RDS(on) of the low-side MOSFET (typical at TJ = 25°C and VGS = 7.5 V). This design uses a low-DCR, metal-powder inductor, and composite ceramic–polymer electrolytic output capacitor implementation.

Table 9-6 List of Materials for Application Circuit 1
REFERENCE DESIGNATORQTYSPECIFICATIONMANUFACTURERPART NUMBER
CIN72.2 µF, 100 V, X7R, 1210, ceramicTDKC3225X7R2A225M230AB
MurataGRM32ER72A225KA35L
KemetC1210C225K1RACTU
COUT747 µF, 10 V, X7R, 1210, ceramicMurataGRM32ER71A476KE15L
Taiyo YudenLMK325B7476MM-TR
AVX1210ZC476KAT2A
KemetC1210C476M8RAC7800
COUT(BULK)1220 µF, 6.3 V, 10 mΩ, polymer electrolyticMurataECASD60J227M010K00
LF13.3 µH, 3.75 mΩ, 40 A, 13.45 × 12.6 × 6.3 mmCyntecCMLS136E-3R3MS
3.3 µH, 5.7 mΩ, 32 A, 12.5 × 12.5 × 6.2 mmWürth Electronik744373965033
Q1180 V, 12 mΩ, high-side MOSFET, SON 5 × 6InfineonBSC117N08NS5
Q2180 V, 4 mΩ, low-side MOSFET, SON 5 × 6InfineonBSC037N08NS5
U11Wide VIN synchronous buck controllerTexas InstrumentsLM5145RGYR