SNVSBU4E June   2022  – August 2024 LM5177

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 Handling Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1 Gate Driver Rise Time and Fall Time
    2. 6.2 Gate Driver Dead (Transition) Time
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Power-On Reset (POR System)
      2. 7.3.2  Buck-Boost Control Scheme
        1. 7.3.2.1 Boost Mode
        2. 7.3.2.2 Buck Mode
        3. 7.3.2.3 Buck-Boost Mode
      3. 7.3.3  Power Save Mode
      4. 7.3.4  Supply Voltage Selection – VMAX Switch
      5. 7.3.5  Enable and Undervoltage Lockout
      6. 7.3.6  Oscillator Frequency Selection
      7. 7.3.7  Frequency Synchronization
      8. 7.3.8  Voltage Regulation Loop
      9. 7.3.9  Output Voltage Tracking
      10. 7.3.10 Slope Compensation
      11. 7.3.11 Configurable Soft Start
      12. 7.3.12 Peak Current Sensor
      13. 7.3.13 Current Monitoring and Current Limit Control Loop
      14. 7.3.14 Short Circuit - Hiccup Protection
      15. 7.3.15 nFLT Pin and Protections
      16. 7.3.16 Device Configuration Pin
      17. 7.3.17 Dual Random Spread Spectrum – DRSS
      18. 7.3.18 Gate Driver
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Custom Design with WEBENCH Tools
        2. 8.2.2.2  Frequency
        3. 8.2.2.3  Feedback Divider
        4. 8.2.2.4  Inductor and Current Sense Resistor Selection
        5. 8.2.2.5  Slope Compensation
        6. 8.2.2.6  Output Capacitor
        7. 8.2.2.7  Input Capacitor
        8. 8.2.2.8  UVLO Divider
        9. 8.2.2.9  Soft-Start Capacitor
        10. 8.2.2.10 MOSFETs QH1 and QL1
        11. 8.2.2.11 MOSFETs QH2 and QL2
        12. 8.2.2.12 Frequency Compensation
        13. 8.2.2.13 External Component Selection
      3. 8.2.3 Application Curves
    3. 8.3 System Examples
      1. 8.3.1 Bi-Directional Power Backup
      2. 8.3.2 Parallel (Multiphase) Operation
  10. Power Supply Recommendations
  11. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Power Stage Layout
      2. 10.1.2 Gate Driver Layout
      3. 10.1.3 Controller Layout
    2. 10.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Development Support
        1. 11.1.2.1 Custom Design with WEBENCH Tools
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information

Application Curves

LM5177 Start-up waveform standby to active operation (MODE = V(VCC), Vo = 12
                        V, Io = 0 A, V(VIN) = 12 V) Figure 8-2 Start-up waveform standby to active operation
(MODE = V(VCC), Vo = 12 V, Io = 0 A, V(VIN) = 12 V)
LM5177 Inductor current
                        buck-boost operation (MODE =
                        V(VCC), Vo = 12 V, Io = 0 A,
                            V(VIN) = 12 V)Figure 8-4 Inductor current buck-boost operation
(MODE = V(VCC), Vo = 12 V, Io = 0 A, V(VIN) = 12 V)
LM5177 Inductor current boost
                        operation (MODE = 0 V, Vo = 12 V,
                            Io = 10 mA, V(VIN) = 6 V)Figure 8-6 Inductor current boost operation
(MODE = 0 V, Vo = 12 V, Io = 10 mA, V(VIN) = 6 V)
LM5177 Inductor current buck
                        operation (MODE = 0 V, Vo = 12 V,
                            Io = 10 mA, V(VIN) = 24 V)Figure 8-8 Inductor current buck operation
(MODE = 0 V, Vo = 12 V, Io = 10 mA, V(VIN) = 24 V)
LM5177 Efficiency Versus IO
                        (MODE = 0V Vo = 12 V)Figure 8-10 Efficiency Versus IO
(MODE = 0V Vo = 12 V)
LM5177 Efficiency Versus IO in Boost Mode(VIN = 5 V, Vo = 12 V)Figure 8-12 Efficiency Versus IO in Boost Mode
(VIN = 5 V, Vo = 12 V)
LM5177 Efficiency Versus IO in Buck ModeVIN = 24 V, Vo = 12 V)Figure 8-14 Efficiency Versus IO in Buck Mode
VIN = 24 V, Vo = 12 V)
LM5177 Inductor current boost
                        operation (MODE = V(VCC),
                            Vo = 12 V, Io = 0 A, V(VIN) = 6
                        V)Figure 8-3 Inductor current boost operation
(MODE = V(VCC), Vo = 12 V, Io = 0 A, V(VIN) = 6 V)
LM5177 Inductor current buck
                        operation (MODE = V(VCC),
                            Vo = 12 V, Io = 0 A, V(VIN) = 24
                        V)Figure 8-5 Inductor current buck operation
(MODE = V(VCC), Vo = 12 V, Io = 0 A, V(VIN) = 24 V)
LM5177 Inductor current
                        buck-boost operation (MODE = 0 V,
                            Vo = 12 V, Io = 10 mA, V(VIN) = 12
                        V)Figure 8-7 Inductor current buck-boost operation
(MODE = 0 V, Vo = 12 V, Io = 10 mA, V(VIN) = 12 V)
LM5177 Input voltage ramp from 6V
                        to 24V (MODE = V(VCC),
                            Vo = 12 V, Io = 6A Figure 8-9 Input voltage ramp from 6V to 24V
(MODE = V(VCC), Vo = 12 V, Io = 6A
LM5177 Efficiency Versus IO
                        (MODE = VCC Vo = 12 V)Figure 8-11 Efficiency Versus IO
(MODE = VCC Vo = 12 V)
LM5177 Efficiency Versus IO in Buck-Boost Mode VIN = 12 V, Vo = 12
                        V)Figure 8-13 Efficiency Versus IO in Buck-Boost Mode
VIN = 12 V, Vo = 12 V)
LM5177 Efficiency Versus VIN
                        (Vo = 12 V, IO = 6
                        A)Figure 8-15 Efficiency Versus VIN
(Vo = 12 V, IO = 6 A)