SNVSCE8 July   2024 LM5190-Q1

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
    1. 4.1 Wettable Flanks
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings 
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Input Voltage Range (VIN)
      2. 6.3.2  High-Voltage Bias Supply Regulator (VCC, BIAS)
      3. 6.3.3  Precision Enable (EN)
      4. 6.3.4  Power-Good Monitor (PGOOD)
      5. 6.3.5  Switching Frequency (RT)
      6. 6.3.6  Low Dropout Mode
      7. 6.3.7  Dual Random Spread Spectrum (DRSS)
      8. 6.3.8  Soft Start
      9. 6.3.9  Output Voltage Setpoint (FB)
      10. 6.3.10 Minimum Controllable On Time
      11. 6.3.11 Inductor Current Sense (ISNS+, VOUT)
      12. 6.3.12 Voltage Loop Error Amplifier
      13. 6.3.13 Current Monitor, Programmable Current Limit, and Current Loop Error Amplifier (IMON/ILIM, ISET)
      14. 6.3.14 Dual Loop Architecture
      15. 6.3.15 PWM Comparator
      16. 6.3.16 Slope Compensation
      17. 6.3.17 High-Side and Low-Side Gate Drivers (HO, LO)
    4. 6.4 Device Functional Modes
      1. 6.4.1 Sleep Mode
      2. 6.4.2 Forced PWM Mode and Synchronization (FPWM/SYNC)
      3. 6.4.3 Thermal Shutdown
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Power Train Components
        1. 7.1.1.1 Buck Inductor
        2. 7.1.1.2 Output Capacitors
        3. 7.1.1.3 Input Capacitors
        4. 7.1.1.4 Power MOSFETs
        5. 7.1.1.5 EMI Filter
      2. 7.1.2 Error Amplifier and Compensation
    2. 7.2 Typical Applications
      1. 7.2.1 High Efficiency 400kHz CC-CV Regulator
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
          1. 7.2.1.2.1 Custom Design With Excel Quickstart Tool
          2. 7.2.1.2.2 Recommended Components
        3. 7.2.1.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
        1. 7.4.1.1 Power Stage Layout
        2. 7.4.1.2 Gate-Drive Layout
        3. 7.4.1.3 PWM Controller Layout
        4. 7.4.1.4 Thermal Design and Layout
        5. 7.4.1.5 Ground Plane Design
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Development Support
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
        1. 8.2.1.1 PCB Layout Resources
        2. 8.2.1.2 Thermal Design Resources
    3. 8.3 Receiving Notification of Documentation Updates
    4. 8.4 Support Resources
    5. 8.5 Trademarks
    6. 8.6 Electrostatic Discharge Caution
    7. 8.7 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information
    1. 10.1 Tape and Reel Information

Forced PWM Mode and Synchronization (FPWM/SYNC)

A synchronous buck regulator implemented with a low-side synchronous MOSFET rather than a diode has the capability to sink negative current from the output during conditions of, light-load, output overvoltage, and pre-bias start-up conditions. The LM5190-Q1 provides a diode emulation feature that can be enabled to prevent reverse (drain-to-source) current flow in the low-side MOSFET. When configured for diode emulation mode, the low-side MOSFET is switched off when reverse current flow is detected by sensing the SW voltage using a zero-cross comparator. The benefit of this configuration is lower power loss during light-load conditions. The disadvantage of diode emulation mode is slower light-load transient response.

The FPWM/SYNC pin configures diode emulation mode and forced PWM mode. To enable diode emulation and thus achieve low-IQ current at light loads, connect FPWM/SYNC to AGND. If FPWM with continuous conduction mode (CCM) operation is desired, tie FPWM/SYNC to VCC. Note that diode emulation is automatically engaged to prevent reverse current flow during a prebias start-up. A gradual change from DCM to CCM operation provides monotonic start-up performance.

To synchronize the LM5190-Q1 to an external source, apply a logic-level clock to the FPWM/SYNC pin. The LM5190-Q1 can be synchronized to ±20% of the programmed frequency up to a maximum of 2.5MHz. When the LM5190-Q1is operating in synchronization mode, LM5190-Q1 operates in FPWM mode. If there is an RT resistor tied to AGND and a synchronization signal, the LM5190-Q1 ignores the RT resistor and synchronizes to the external clock. If there is an RT resistor tied to VCC and a synchronization signal, the synchronization signal is ignored and the LM5190-Q1operates in RT defined frequency with DRSS. Under low VIN conditions when the minimum off time is reached, the synchronization signal is ignored, allowing the switching frequency to reduce to maintain output voltage regulation.