SNVSCE8 July 2024 LM5190-Q1
ADVANCE INFORMATION
In the current loop, the LM5190-Q1 has a high-gain transconductance amplifier that generates an error current proportional to the difference between the IMON voltage and an internal precision reference (1V). The transconductance of the amplifier is 1000µS. The current loop error amplifier only takes control when the internal minimum function block IMIN selector selects the current from the current loop error amplifier. See Section 6.3.14 for more details regarding the constant-current constant-voltage operation.
The RIMON is used to programmed the CC regulation target. The CC regulation target is usually defined to be smaller than the maximum current defined by the cycle-by-cycle peak current limit in Inductor Current Sense (ISNS+, VOUT). The RIMON is selected by Equation 9.
where
The CIMON is used to form the RC filter with RIMON and filter out the sensed inductor current ripple to the achieve average current regulation. The CIMON also sets the response of the current loop. With RIMON and CIMON selected, IMON/ILIM multi-functional pin can be used as the current monitor when the converter is operating in CV loop. The average inductor current can be read from IMON/ILIM voltage by using Equation 10.
where VIMON is the voltage on IMON/ILIM pin and IAVG is the average inductor current. The DC offset current is introduced at IMON/ILIM pin to raise the no-load signal above the possible ground noise floor.
ISET can be used to dynamically program the CC regulation current. An external voltage forced at ISET can set the CC regulation current by Equation 11.
where ICCset is the desired average current to be programmed by ISET. ISET is only functional when ISET voltage is smaller than VrefI (1V typical). ISET has an internal current source of 10µA typical so ISET can be used with a capacitor at the pin to achieve the current soft start during CC transient such as super capacitor and battery charging conditions.