SPNU151W January 1998 – March 2023 66AK2E05 , 66AK2H06 , 66AK2H12 , 66AK2H14 , AM1705 , AM1707 , AM1802 , AM1806 , AM1808 , AM1810 , AM5K2E04 , OMAP-L132 , OMAP-L137 , OMAP-L138 , SM470R1B1M-HT , TMS470R1A288 , TMS470R1A384 , TMS470R1A64 , TMS470R1B1M , TMS470R1B512 , TMS470R1B768
Aliasing occurs when a single object can be accessed in more than one way, such as when two pointers point to the same object or when a pointer points to a named object. Aliasing can disrupt optimization because any indirect reference can refer to another object. The optimizer analyzes the code to determine where aliasing can and cannot occur, then optimizes as much as possible while still preserving the correctness of the program. The optimizer behaves conservatively. If there is a chance that two pointers are pointing to the same object, then the optimizer assumes that the pointers do point to the same object.
The compiler assumes that if the address of a local variable is passed to a function, the function changes the local variable by writing through the pointer. This makes the local variable's address unavailable for use elsewhere after returning. For example, the called function cannot assign the local variable's address to a global variable or return the local variable's address. In cases where this assumption is invalid, use the --aliased_variables compiler option to force the compiler to assume worst-case aliasing. In worst-case aliasing, any indirect reference can refer to such a variable.