SPRACZ9A November   2021  – December 2022 TMS320F2800132 , TMS320F2800133 , TMS320F2800135 , TMS320F2800137 , TMS320F2800152-Q1 , TMS320F2800153-Q1 , TMS320F2800154-Q1 , TMS320F2800155 , TMS320F2800155-Q1 , TMS320F2800156-Q1 , TMS320F2800157 , TMS320F2800157-Q1 , TMS320F280021 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280033 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C-Q1

 

  1.   Hardware Design Guide for F2800x Devices
  2.   Trademarks
  3. 1Introduction
  4. 2Typical F2800x System Block Diagram
  5. 3Schematic Design
    1. 3.1 Package and Device Decision
      1. 3.1.1 F2800x Devices
        1. 3.1.1.1 TMS320F28004x
        2. 3.1.1.2 TMS320F28002x
        3. 3.1.1.3 TMS320F28003x
        4. 3.1.1.4 TMS320F280013x
      2. 3.1.2 Migration Guides
      3. 3.1.3 PinMux Tool
      4. 3.1.4 Configurable Logic Block
    2. 3.2 Digital IOs
      1. 3.2.1 General Purpose Input/Outputs
      2. 3.2.2 Integrated Peripherals and X-BARs
      3. 3.2.3 Control Peripherals
      4. 3.2.4 Communication Peripherals
      5. 3.2.5 Boot Pins and Boot Peripherals
    3. 3.3 Analog IOs
      1. 3.3.1 Analog Peripherals
      2. 3.3.2 Choosing Analog Pins
      3. 3.3.3 Internal vs. External Analog Reference
      4. 3.3.4 ADC Inputs
      5. 3.3.5 Driving Options
      6. 3.3.6 Low-Pass/Anti-Aliasing Filters
    4. 3.4 Power Supply
      1. 3.4.1 Power Requirements
      2. 3.4.2 Power Sequencing
      3. 3.4.3 VDD Voltage Regulator
        1. 3.4.3.1 Internal vs. External Regulator
        2. 3.4.3.2 Internal LDO vs. Internal DC-DC Regulator
      4. 3.4.4 Power Consumption
      5. 3.4.5 Power Calculations
    5. 3.5 XRSn and System Reset
    6. 3.6 Clocking
      1. 3.6.1 Internal vs. External Oscillator
    7. 3.7 Debugging and Emulation
      1. 3.7.1 JTAG/cJTAG
      2. 3.7.2 Debug Probe
    8. 3.8 Unused Pins
  6. 4PCB Layout Design
    1. 4.1 Layout Design Overview
      1. 4.1.1 Recommend Layout Practices
      2. 4.1.2 Board Dimensions
      3. 4.1.3 Layer Stack-Up
    2. 4.2 Recommended Board Layout
    3. 4.3 Placing Components
      1. 4.3.1 Power Electronic Considerations
    4. 4.4 Ground Plane
    5. 4.5 Analog and Digital Separation
    6. 4.6 Signal Routing With Traces and Vias
    7. 4.7 Thermal Considerations
  7. 5EOS, EMI/EMC, and ESD Considerations
    1. 5.1 Electrical Overstress
    2. 5.2 Electromagnetic Interference and Electromagnetic Compatibility
    3. 5.3 Electrostatic Discharge
  8. 6Final Details and Checklist
  9. 7References
  10. 8Revision History

F2800x Devices

The entry and mid-performance C2000 devices come in a variety of package options to perfectly fit a wide range of applications and systems. The C2000 devices are available in entry-performance packages for simple control systems as well as higher-performance packages for feature-rich systems. The main devices­ of F280013x, F28002x, F28003x, and F28004x are distinct families with different device specs and features. Branching further, each of these devices come in varying packages and pinouts. This gives a large device and pin-package library of which to choose from for designing systems. This enables users the ability to implement their systems with adequately-tuned peripheral support at an optimized cost.

All F2800x devices offer support for many communication peripherals, including CAN, I2C, SCI, SPI, LIN, PMBus, and FSI. With regard to analog peripherals, all of these devices include varying numbers of 12-bit ADCs, external ADC channels, and windowed comparators (CMPSS) with reference DACs. Control peripherals include eCAPs, ePWMs, and eQEPs.

For an exhaustive overview of the peripheral support for each of TI's available C2000 devices, see the C2000 Real-Time Control MCU Peripherals Reference Guide.

GUID-20211102-SS0I-8FRX-ZDWV-ZJXVF5GWLXP2-low.png Figure 3-2 TI C2000 Product Selection Page

The C2000 product selection page offers the ability to search and filter devices by specifications such as frequency, flash size, RAM, ADC resolution, MIPS, and number of peripherals. Once the system requirements have been finalized, this tool can be a useful way to provide guidance on which specific packages would be a good fit for the system being built.