SPRAD06B March   2022  â€“ November 2024 AM620-Q1 , AM623 , AM625 , AM625-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Overview
    1. 1.1 Board Designs Supported
    2. 1.2 General Board Layout Guidelines
    3. 1.3 PCB Stack-Up
    4. 1.4 Bypass Capacitors
      1. 1.4.1 Bulk Bypass Capacitors
      2. 1.4.2 High-Speed Bypass Capacitors
      3. 1.4.3 Return Current Bypass Capacitors
    5. 1.5 Velocity Compensation
  5. 2DDR4 Board Design and Layout Guidance
    1. 2.1  DDR4 Introduction
    2. 2.2  DDR4 Device Implementations Supported
    3. 2.3  DDR4 Interface Schematics
      1. 2.3.1 DDR4 Implementation Using 16-Bit SDRAM Devices
      2. 2.3.2 DDR4 Implementation Using 8-Bit SDRAM Devices
    4. 2.4  Compatible JEDEC DDR4 Devices
    5. 2.5  Placement
    6. 2.6  DDR4 Keepout Region
    7. 2.7  DBI
    8. 2.8  VPP
    9. 2.9  Net Classes
    10. 2.10 DDR4 Signal Termination
    11. 2.11 VREF Routing
    12. 2.12 VTT
    13. 2.13 POD Interconnect
    14. 2.14 CK and ADDR_CTRL Topologies and Routing Guidance
    15. 2.15 Data Group Topologies and Routing Guidance
    16. 2.16 CK and ADDR_CTRL Routing Specification
      1. 2.16.1 CACLM - Clock Address Control Longest Manhattan Distance
      2. 2.16.2 CK and ADDR_CTRL Routing Limits
    17. 2.17 Data Group Routing Specification
      1. 2.17.1 DQLM - DQ Longest Manhattan Distance
      2. 2.17.2 Data Group Routing Limits
    18. 2.18 Bit Swapping
      1. 2.18.1 Data Bit Swapping
      2. 2.18.2 Address and Control Bit Swapping
  6. 3LPDDR4 Board Design and Layout Guidance
    1. 3.1  LPDDR4 Introduction
    2. 3.2  LPDDR4 Device Implementations Supported
    3. 3.3  LPDDR4 Interface Schematics
    4. 3.4  Compatible JEDEC LPDDR4 Devices
    5. 3.5  Placement
    6. 3.6  LPDDR4 Keepout Region
    7. 3.7  LPDDR4 DBI
    8. 3.8  Net Classes
    9. 3.9  LPDDR4 Signal Termination
    10. 3.10 LPDDR4 VREF Routing
    11. 3.11 LPDDR4 VTT
    12. 3.12 CK0 and ADDR_CTRL Topologies
    13. 3.13 Data Group Topologies
    14. 3.14 CK0 and ADDR_CTRL Routing Specification
    15. 3.15 Data Group Routing Specification
    16. 3.16 Byte and Bit Swapping
  7. 4LPDDR4 Board Design Simulations
    1. 4.1 Board Model Extraction
    2. 4.2 Board-Model Validation
    3. 4.3 S-Parameter Inspection
    4. 4.4 Time Domain Reflectometry (TDR) Analysis
    5. 4.5 System Level Simulation
      1. 4.5.1 Simulation Setup
      2. 4.5.2 Simulation Parameters
      3. 4.5.3 Simulation Targets
        1. 4.5.3.1 Eye Quality
        2. 4.5.3.2 Delay Report
        3. 4.5.3.3 Mask Report
    6. 4.6 Design Example
      1. 4.6.1 Stack-Up
      2. 4.6.2 Routing
      3. 4.6.3 Model Verification
      4. 4.6.4 Simulation Results
  8. 5Appendix: AM62x ALW and AMC Package Delays
  9. 6Revision History

Board Designs Supported

The goal of this document is to make the DDR system implementation straightforward for all designers. Requirements have been distilled down to a set of layout and routing rules that allow designers to successfully implement a robust design for the topologies that TI supports. At this time, TI does not provide timing parameters for the processor’s DDR PHY interface.

It is still expected that the PCB design work (design, layout, and fabrication) be performed and reviewed by a highly knowledgeable high-speed PCB designer. Problems such as impedance discontinuities when signals cross a split in a reference plane can be detected visually by those with the proper experience.

TI only supports board designs using DDR4 and LPDDR4 memory that follow the guidelines in this document. These guidelines are based on well-known transmission line properties for copper traces routed over a solid reference plane. Declaring insufficient PCB space does not allow routing guidelines to be discounted.