Product details

Arm CPU 1 Arm Cortex-A53, 2 Arm Cortex-A53, 4 Arm Cortex-A53 Arm (max) (MHz) 1400 Coprocessors 1 Arm Cortex-M4F, GPU CPU 64-bit Graphics acceleration 1 3D Display type MIPI DPI, OLDI Protocols Ethernet, TSN Ethernet MAC 2-Port 10/100/1000 Hardware accelerators PRU-SS Features General purpose Operating system Android, Linux Security Secure boot Rating Catalog Power supply solution TPS65219 Operating temperature range (°C) -40 to 105
Arm CPU 1 Arm Cortex-A53, 2 Arm Cortex-A53, 4 Arm Cortex-A53 Arm (max) (MHz) 1400 Coprocessors 1 Arm Cortex-M4F, GPU CPU 64-bit Graphics acceleration 1 3D Display type MIPI DPI, OLDI Protocols Ethernet, TSN Ethernet MAC 2-Port 10/100/1000 Hardware accelerators PRU-SS Features General purpose Operating system Android, Linux Security Secure boot Rating Catalog Power supply solution TPS65219 Operating temperature range (°C) -40 to 105
FCCSP (ALW) 425 169 mm² 13 x 13

Processor Cores:

  • Up to Quad 64-bit Arm Cortex-A53 microprocessor subsystem at up to 1.4 GHz
    • Quad-core Cortex-A53 cluster with 512KB L2 shared cache with SECDED ECC
    • Each A53 Core has 32KB L1 DCache with SECDED ECC and 32KB L1 ICache with Parity protection
  • Single-core Arm® Cortex®-M4F MCU at up to 400 MHz
    • 256KB SRAM with SECDED ECC
  • Dedicated Device/Power Manager

Multimedia:

  • Display subsystem
    • Dual display support
    • 1920x1080 @ 60fps for each display
    • 1x 2048x1080 + 1x 1280x720
    • Up to 165 MHz pixel clock support with Independent PLL for each display
    • OLDI (4 lanes LVDS - 2x) and DPI (24-bit RGB LVCMOS)
    • Support safety feature such as freeze frame detection and MISR data check
  • 3D Graphics Processing Unit
    • 1 pixel per clock or higher
    • Fillrate greater than 500 Mpixels/sec
    • >500 MTexels/s, >8 GFLOPs
    • Supports at least 2 composition layers
    • Supports up to 2048x1080 @60fps
    • Supports ARGB32, RGB565 and YUV formats
    • 2D graphics capable
    • OpenGL ES 3.1, Vulkan 1.2
  • One Camera Serial interface (CSI-Rx) - 4 Lane with DPHY
    • MIPI CSI-2 v1.3 Compliant + MIPI D-PHY 1.2
    • Support for 1,2,3 or 4 data lane mode up to 1.5Gbps
    • ECC verification/correction with CRC check + ECC on RAM
    • Virtual Channel support (up to 16)
    • Ability to write stream data directly to DDR via DMA

Memory Subsystem:

  • Up to 816KB of On-chip RAM
    • 64KB of On-chip RAM (OCSRAM) with SECDED ECC , Can be divided into smaller banks in increments of 32KB for as many as 2 separate memory banks
    • 256KB of On-chip RAM with SECDED ECC in SMS Subsystem
    • 176KB of On-chip RAM with SECDED ECC in SMS Subsystem for TI security firmware
    • 256KB of On-chip RAM with SECDED ECC in Cortex-M4F MCU subsystem
    • 64KB of On-chip RAM with SECDED ECC in Device/Power Manager Subsystem
  • DDR Subsystem (DDRSS)
    • Supports LPDDR4, DDR4 memory types
    • 16-Bit data bus with inline ECC
    • Supports speeds up to 1600 MT/s
    • Max addressable range
      • 8GBytes with DDR4
      • 4GBytes with LPDDR4

Functional Safety:

  • Functional Safety-Compliant targeted [Industrial]
    • Developed for functional safety applications
    • Documentation will be available to aid IEC 61508 functional safety system design
    • Systematic capability up to SIL 3 targeted
    • Hardware Integrity up to SIL 2 targeted
    • Safety-related certification
      • IEC 61508 by TUV SUD planned
  • Functional Safety-Compliant targeted [Automotive]
    • Developed for functional safety applications
    • Documentation will be available to aid ISO 26262 functional safety system design
    • Systematic capability up to ASIL D targeted
    • Hardware integrity up to ASIL B targeted
    • Safety-related certification
      • ISO 26262 by TUV SUD planned
  • AEC - Q100 qualified

Security:

  • Secure boot supported
    • Hardware-enforced Root-of-Trust (RoT)
    • Support to switch RoT via backup key
    • Support for takeover protection, IP protection, and anti-roll back protection
  • Trusted Execution Environment (TEE) supported
    • Arm TrustZone based TEE
    • Extensive firewall support for isolation
    • Secure watchdog/timer/IPC
    • Secure storage support
    • Replay Protected Memory Block (RPMB) support
  • Dedicated Security Controller with user programmable HSM core and dedicated security DMA & IPC subsystem for isolated processing
  • Cryptographic acceleration supported
    • Session-aware cryptographic engine with ability to auto-switch key-material based on incoming data stream
      • Supports cryptographic cores
    • AES – 128-/192-/256-Bit key sizes
    • SHA2 – 224-/256-/384-/512-Bit key sizes
    • DRBG with true random number generator
    • PKA (Public Key Accelerator) to Assist in RSA/ECC processing for secure boot
  • Debugging security
    • Secure software controlled debug access
    • Security aware debugging

PRU Subsystem:

  • Dual-core Programmable Real-Time Unit Subystem (PRUSS) running up to 333 MHz
  • Intended for driving GPIO for cycle accurate protocols such as additional:
    • General Purpose Input/Output (GPIO)
    • UARTs
    • I 2C
    • External ADC
  • 16KByte program memory per PRU with SECDED ECC
  • 8KB data memory per PRU with SECDED ECC
  • 32KB general purpose memory with SECDED ECC
  • CRC32/16 HW accelerator
  • Scratch PAD memory with 3 banks of 30 x 32-bit registers
  • 1 Industrial 64-bit timer with 9 capture and 16 compare events, along with slow and fast compensation
  • 1 interrupt controller (INTC), minimum of 64 input events supported

High-Speed Interfaces:

  • Integrated Ethernet switch supporting (total 2 external ports)
    • RMII(10/100) or RGMII (10/100/1000)
    • IEEE1588 (Annex D, Annex E, Annex F with 802.1AS PTP)
    • Clause 45 MDIO PHY management
    • Packet Classifier based on ALE engine with 512 classifiers
    • Priority based flow control
    • Time sensitive networking (TSN) support
    • Four CPU H/W interrupt Pacing
    • IP/UDP/TCP checksum offload in hardware
  • Two USB2.0 Ports
    • Port configurable as USB host, USB peripheral, or USB Dual-Role Device (DRD mode)
    • Integrated USB VBUS detection
    • Trace over USB supported

General Connectivity:

  • 9x Universal Asynchronous Receiver-Transmitters (UART)
  • 5x Serial Peripheral Interface (SPI) controllers
  • 6x Inter-Integrated Circuit (I 2C) ports
  • 3x Multichannel Audio Serial Ports (McASP)
    • Transmit and Receive Clocks up to 50 MHz
    • Up to 16/10/6 Serial Data Pins across 3x McASP with Independent TX and RX Clocks
    • Supports Time Division Multiplexing (TDM), Inter-IC Sound (I2S), and Similar Formats
    • Supports Digital Audio Interface Transmission (SPDIF, IEC60958-1, and AES-3 Formats)
    • FIFO Buffers for Transmit and Receive (256 Bytes)
    • Support for audio reference output clock
  • 3x enhanced PWM modules (ePWM)
  • 3x enhanced Quadrature Encoder Pulse modules (eQEP)
  • 3x enhanced Capture modules (eCAP)
  • General-Purpose I/O (GPIO), All LVCMOS I/O can be configured as GPIO
  • 3x Controller Area Network (CAN) modules with CAN-FD support
    • Conforms w/ CAN Protocol 2.0 A, B and ISO 11898-1
    • Full CAN FD support (up to 64 data bytes)
    • Parity/ECC check for Message RAM
    • Speed up to 8Mbps

Media and Data Storage:

  • 3x Multi-Media Card/Secure Digital (MMC/SD) interface
    • 1x 8-bit eMMC interface up to HS200 speed
    • 2x 4-bit SD/SDIO interface up to UHS-I
    • Compliant with eMMC 5.1, SD 3.0 and SDIO Version 3.0
  • 1× General-Purpose Memory Controller (GPMC) up to 133 MHz
    • Flexible 8- and 16-Bit Asynchronous Memory Interface With up to four Chip (22-bit address) Selects (NAND, NOR, Muxed-NOR, and SRAM)
    • Uses BCH Code to Support 4-, 8-, or 16-Bit ECC
    • Uses Hamming Code to Support 1-Bit ECC
    • Error Locator Module (ELM)
      • Used With the GPMC to Locate Addresses of Data Errors From Syndrome Polynomials Generated Using a BCH Algorithm
      • Supports 4-, 8-, and 16-Bit Per 512-Byte Block Error Location Based on BCH Algorithms
  • OSPI/QSPI with DDR / SDR support
    • Support for Serial NAND and Serial NOR flash devices
    • 4GBytes memory address support
    • XIP mode with optional on-the-fly encryption

Power Management:

  • Low power modes supported by Device/Power Manager
    • Partial IO support for CAN/GPIO/UART wakeup
    • DeepSleep
    • MCU Only
    • Standby
    • Dynamic frequency scaling for Cortex-A53

Optimal Power Management Solution:

  • Recommended TPS65219 Power Management ICs (PMIC)
    • Companion PMIC specially designed to meet device power supply requirements
    • Flexible mapping and factory programmed configurations to support different use cases

Boot Options:

  • UART
  • I 2C EEPROM
  • OSPI/QSPI Flash
  • GPMC NOR/NAND Flash
  • Serial NAND Flash
  • SD Card
  • eMMC
  • USB (host) boot from Mass Storage device
  • USB (device) boot from external host (DFU mode)
  • Ethernet

Technology / Package:

  • 16-nm technology
  • 13 mm x 13 mm, 0.5-mm pitch, 425-pin FCCSP BGA (ALW)
  • 17.2 mm x 17.2 mm, 0.8-mm pitch, 441-pin FCBGA (AMC)

Processor Cores:

  • Up to Quad 64-bit Arm Cortex-A53 microprocessor subsystem at up to 1.4 GHz
    • Quad-core Cortex-A53 cluster with 512KB L2 shared cache with SECDED ECC
    • Each A53 Core has 32KB L1 DCache with SECDED ECC and 32KB L1 ICache with Parity protection
  • Single-core Arm® Cortex®-M4F MCU at up to 400 MHz
    • 256KB SRAM with SECDED ECC
  • Dedicated Device/Power Manager

Multimedia:

  • Display subsystem
    • Dual display support
    • 1920x1080 @ 60fps for each display
    • 1x 2048x1080 + 1x 1280x720
    • Up to 165 MHz pixel clock support with Independent PLL for each display
    • OLDI (4 lanes LVDS - 2x) and DPI (24-bit RGB LVCMOS)
    • Support safety feature such as freeze frame detection and MISR data check
  • 3D Graphics Processing Unit
    • 1 pixel per clock or higher
    • Fillrate greater than 500 Mpixels/sec
    • >500 MTexels/s, >8 GFLOPs
    • Supports at least 2 composition layers
    • Supports up to 2048x1080 @60fps
    • Supports ARGB32, RGB565 and YUV formats
    • 2D graphics capable
    • OpenGL ES 3.1, Vulkan 1.2
  • One Camera Serial interface (CSI-Rx) - 4 Lane with DPHY
    • MIPI CSI-2 v1.3 Compliant + MIPI D-PHY 1.2
    • Support for 1,2,3 or 4 data lane mode up to 1.5Gbps
    • ECC verification/correction with CRC check + ECC on RAM
    • Virtual Channel support (up to 16)
    • Ability to write stream data directly to DDR via DMA

Memory Subsystem:

  • Up to 816KB of On-chip RAM
    • 64KB of On-chip RAM (OCSRAM) with SECDED ECC , Can be divided into smaller banks in increments of 32KB for as many as 2 separate memory banks
    • 256KB of On-chip RAM with SECDED ECC in SMS Subsystem
    • 176KB of On-chip RAM with SECDED ECC in SMS Subsystem for TI security firmware
    • 256KB of On-chip RAM with SECDED ECC in Cortex-M4F MCU subsystem
    • 64KB of On-chip RAM with SECDED ECC in Device/Power Manager Subsystem
  • DDR Subsystem (DDRSS)
    • Supports LPDDR4, DDR4 memory types
    • 16-Bit data bus with inline ECC
    • Supports speeds up to 1600 MT/s
    • Max addressable range
      • 8GBytes with DDR4
      • 4GBytes with LPDDR4

Functional Safety:

  • Functional Safety-Compliant targeted [Industrial]
    • Developed for functional safety applications
    • Documentation will be available to aid IEC 61508 functional safety system design
    • Systematic capability up to SIL 3 targeted
    • Hardware Integrity up to SIL 2 targeted
    • Safety-related certification
      • IEC 61508 by TUV SUD planned
  • Functional Safety-Compliant targeted [Automotive]
    • Developed for functional safety applications
    • Documentation will be available to aid ISO 26262 functional safety system design
    • Systematic capability up to ASIL D targeted
    • Hardware integrity up to ASIL B targeted
    • Safety-related certification
      • ISO 26262 by TUV SUD planned
  • AEC - Q100 qualified

Security:

  • Secure boot supported
    • Hardware-enforced Root-of-Trust (RoT)
    • Support to switch RoT via backup key
    • Support for takeover protection, IP protection, and anti-roll back protection
  • Trusted Execution Environment (TEE) supported
    • Arm TrustZone based TEE
    • Extensive firewall support for isolation
    • Secure watchdog/timer/IPC
    • Secure storage support
    • Replay Protected Memory Block (RPMB) support
  • Dedicated Security Controller with user programmable HSM core and dedicated security DMA & IPC subsystem for isolated processing
  • Cryptographic acceleration supported
    • Session-aware cryptographic engine with ability to auto-switch key-material based on incoming data stream
      • Supports cryptographic cores
    • AES – 128-/192-/256-Bit key sizes
    • SHA2 – 224-/256-/384-/512-Bit key sizes
    • DRBG with true random number generator
    • PKA (Public Key Accelerator) to Assist in RSA/ECC processing for secure boot
  • Debugging security
    • Secure software controlled debug access
    • Security aware debugging

PRU Subsystem:

  • Dual-core Programmable Real-Time Unit Subystem (PRUSS) running up to 333 MHz
  • Intended for driving GPIO for cycle accurate protocols such as additional:
    • General Purpose Input/Output (GPIO)
    • UARTs
    • I 2C
    • External ADC
  • 16KByte program memory per PRU with SECDED ECC
  • 8KB data memory per PRU with SECDED ECC
  • 32KB general purpose memory with SECDED ECC
  • CRC32/16 HW accelerator
  • Scratch PAD memory with 3 banks of 30 x 32-bit registers
  • 1 Industrial 64-bit timer with 9 capture and 16 compare events, along with slow and fast compensation
  • 1 interrupt controller (INTC), minimum of 64 input events supported

High-Speed Interfaces:

  • Integrated Ethernet switch supporting (total 2 external ports)
    • RMII(10/100) or RGMII (10/100/1000)
    • IEEE1588 (Annex D, Annex E, Annex F with 802.1AS PTP)
    • Clause 45 MDIO PHY management
    • Packet Classifier based on ALE engine with 512 classifiers
    • Priority based flow control
    • Time sensitive networking (TSN) support
    • Four CPU H/W interrupt Pacing
    • IP/UDP/TCP checksum offload in hardware
  • Two USB2.0 Ports
    • Port configurable as USB host, USB peripheral, or USB Dual-Role Device (DRD mode)
    • Integrated USB VBUS detection
    • Trace over USB supported

General Connectivity:

  • 9x Universal Asynchronous Receiver-Transmitters (UART)
  • 5x Serial Peripheral Interface (SPI) controllers
  • 6x Inter-Integrated Circuit (I 2C) ports
  • 3x Multichannel Audio Serial Ports (McASP)
    • Transmit and Receive Clocks up to 50 MHz
    • Up to 16/10/6 Serial Data Pins across 3x McASP with Independent TX and RX Clocks
    • Supports Time Division Multiplexing (TDM), Inter-IC Sound (I2S), and Similar Formats
    • Supports Digital Audio Interface Transmission (SPDIF, IEC60958-1, and AES-3 Formats)
    • FIFO Buffers for Transmit and Receive (256 Bytes)
    • Support for audio reference output clock
  • 3x enhanced PWM modules (ePWM)
  • 3x enhanced Quadrature Encoder Pulse modules (eQEP)
  • 3x enhanced Capture modules (eCAP)
  • General-Purpose I/O (GPIO), All LVCMOS I/O can be configured as GPIO
  • 3x Controller Area Network (CAN) modules with CAN-FD support
    • Conforms w/ CAN Protocol 2.0 A, B and ISO 11898-1
    • Full CAN FD support (up to 64 data bytes)
    • Parity/ECC check for Message RAM
    • Speed up to 8Mbps

Media and Data Storage:

  • 3x Multi-Media Card/Secure Digital (MMC/SD) interface
    • 1x 8-bit eMMC interface up to HS200 speed
    • 2x 4-bit SD/SDIO interface up to UHS-I
    • Compliant with eMMC 5.1, SD 3.0 and SDIO Version 3.0
  • 1× General-Purpose Memory Controller (GPMC) up to 133 MHz
    • Flexible 8- and 16-Bit Asynchronous Memory Interface With up to four Chip (22-bit address) Selects (NAND, NOR, Muxed-NOR, and SRAM)
    • Uses BCH Code to Support 4-, 8-, or 16-Bit ECC
    • Uses Hamming Code to Support 1-Bit ECC
    • Error Locator Module (ELM)
      • Used With the GPMC to Locate Addresses of Data Errors From Syndrome Polynomials Generated Using a BCH Algorithm
      • Supports 4-, 8-, and 16-Bit Per 512-Byte Block Error Location Based on BCH Algorithms
  • OSPI/QSPI with DDR / SDR support
    • Support for Serial NAND and Serial NOR flash devices
    • 4GBytes memory address support
    • XIP mode with optional on-the-fly encryption

Power Management:

  • Low power modes supported by Device/Power Manager
    • Partial IO support for CAN/GPIO/UART wakeup
    • DeepSleep
    • MCU Only
    • Standby
    • Dynamic frequency scaling for Cortex-A53

Optimal Power Management Solution:

  • Recommended TPS65219 Power Management ICs (PMIC)
    • Companion PMIC specially designed to meet device power supply requirements
    • Flexible mapping and factory programmed configurations to support different use cases

Boot Options:

  • UART
  • I 2C EEPROM
  • OSPI/QSPI Flash
  • GPMC NOR/NAND Flash
  • Serial NAND Flash
  • SD Card
  • eMMC
  • USB (host) boot from Mass Storage device
  • USB (device) boot from external host (DFU mode)
  • Ethernet

Technology / Package:

  • 16-nm technology
  • 13 mm x 13 mm, 0.5-mm pitch, 425-pin FCCSP BGA (ALW)
  • 17.2 mm x 17.2 mm, 0.8-mm pitch, 441-pin FCBGA (AMC)

The low-cost AM62x Sitara™ MPU family of application processors are built for Linux® application development. With scalable Arm® Cortex®-A53 performance and embedded features, such as: dual-display support and 3D graphics acceleration, along with an extensive set of peripherals that make the AM62x device well-suited for a broad range of industrial and automotive applications while offering intelligent features and optimized power architecture as well.

Some of these applications include:

  • Industrial HMI
  • EV charging stations
  • Touchless building access
  • Driver monitoring systems

AM62x Sitara™ processors are industrial-grade in the 13 x 13 mm package (ALW) and can meet the AEC - Q100 automotive standard in the 17.2 x 17.2 mm package (AMC). Industrial and Automotive functional safety requirements can be addressed using the integrated Cortex-M4F cores and dedicated peripherals, which can all be isolated from the rest of the AM62x processor.

The 3-port Gigabit Ethernet switch has one internal port and two external ports with Time-Sensitive Networking (TSN) support. An additional PRU module on the device enables real-time I/O capability for customer’s own use cases. In addition, the extensive set of peripherals included in AM62x enables system-level connectivity, such as: USB, MMC/SD, Camera interface, OSPI, CAN-FD and GPMC for parallel host interface to an external ASIC/FPGA. The AM62x device also supports secure boot for IP protection with the built-in Hardware Security Module (HSM) and employs advanced power management support for portable and power-sensitive applications

Products in the AM62x processor family:

  • AM625 – Human-machine Interaction SoC with Arm® Cortex®-A53 based edge AI and full-HD dual-display
  • AM625-Q1 – Automotive Display SoC with embedded safety for digital clusters
  • AM623 – Internet of Thinks (IoT) and Gateway SoC with Arm® Cortex®-A53 based object and gesture recognition
  • AM620-Q1 – Automotive Compute SoC with embedded safety for driver monitoring, networking and V2X systems

The low-cost AM62x Sitara™ MPU family of application processors are built for Linux® application development. With scalable Arm® Cortex®-A53 performance and embedded features, such as: dual-display support and 3D graphics acceleration, along with an extensive set of peripherals that make the AM62x device well-suited for a broad range of industrial and automotive applications while offering intelligent features and optimized power architecture as well.

Some of these applications include:

  • Industrial HMI
  • EV charging stations
  • Touchless building access
  • Driver monitoring systems

AM62x Sitara™ processors are industrial-grade in the 13 x 13 mm package (ALW) and can meet the AEC - Q100 automotive standard in the 17.2 x 17.2 mm package (AMC). Industrial and Automotive functional safety requirements can be addressed using the integrated Cortex-M4F cores and dedicated peripherals, which can all be isolated from the rest of the AM62x processor.

The 3-port Gigabit Ethernet switch has one internal port and two external ports with Time-Sensitive Networking (TSN) support. An additional PRU module on the device enables real-time I/O capability for customer’s own use cases. In addition, the extensive set of peripherals included in AM62x enables system-level connectivity, such as: USB, MMC/SD, Camera interface, OSPI, CAN-FD and GPMC for parallel host interface to an external ASIC/FPGA. The AM62x device also supports secure boot for IP protection with the built-in Hardware Security Module (HSM) and employs advanced power management support for portable and power-sensitive applications

Products in the AM62x processor family:

  • AM625 – Human-machine Interaction SoC with Arm® Cortex®-A53 based edge AI and full-HD dual-display
  • AM625-Q1 – Automotive Display SoC with embedded safety for digital clusters
  • AM623 – Internet of Thinks (IoT) and Gateway SoC with Arm® Cortex®-A53 based object and gesture recognition
  • AM620-Q1 – Automotive Compute SoC with embedded safety for driver monitoring, networking and V2X systems

Download View video with transcript Video

More information

  • To view additional reference designs and getting started application software, go to the AM62x Development Portal.
  • For the SysConfig DDR subsystem register configuration tool, go to the DDR Subsystem Register.
  • For an interactive and intuitive graphical tool for enabling, configuring and generating initialization code for device pin multiplexing, go to the SysConfig PINMUX Tool.
  • Security advanced documentation is available for AM62x. Request now.

Similar products you might be interested in

open-in-new Compare alternates
Similar functionality to the compared device
NEW AM62A7 ACTIVE 2 TOPS vision SoC with RGB-IR ISP for 1-2 cameras, low-power systems, machine vision, robotics AI vision acceleration

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 47
Type Title Date
* Data sheet AM62x Sitara™ Processors datasheet (Rev. B) PDF | HTML 15 Jun 2023
* Errata AM62x Sitara Errata (Rev. E) PDF | HTML 13 Jun 2024
* User guide AM62x Sitara Processors Technical Reference Manual (Rev. B) PDF | HTML 05 Jun 2024
Product overview SK-AM62B-P1 Design Package Content Overview PDF | HTML 28 Jun 2024
Application note Estimating Application Useful Lifetimes for Sitara MPU Products – A Design-Based Methodology PDF | HTML 27 Jun 2024
Application note Debugging GPU Driver Issues on TDA4x and AM6x Devices PDF | HTML 20 Jun 2024
White paper Understanding Functional Safety FIT Base Failure Rate Estimates per IEC 62380 and SN 29500 (Rev. A) PDF | HTML 30 Apr 2024
Application brief 智慧多顯示器系統的五個主要設計考量 PDF | HTML 09 Apr 2024
Application brief 스마트 다중 디스플레이 시스템을 위한 5가지 설계 고려 사항 PDF | HTML 09 Apr 2024
Application brief Top Five Design Considerations for Smart Multi-display Systems PDF | HTML 22 Mar 2024
Technical article 新一代 HMI 的三個重要考量 (Rev. A) PDF | HTML 06 Mar 2024
Application note AM625 / AM623 / AM625SIP / AM620-Q1 / AM62A7 / AM62A3-Q1 / AM62P / AM62P-Q1 Schematic Design Checklist (Rev. E) PDF | HTML 23 Feb 2024
Application note AM62x Power Consumption PDF | HTML 16 Feb 2024
Technical article 차세대 HMI를 위한 3가지 핵심 고려 사항 (Rev. A) PDF | HTML 13 Feb 2024
Technical article 為什麼互通性對於不斷發展的電動車充電市場很重要 PDF | HTML 26 Jan 2024
Technical article 진화하는 EV 충전 시장에서 호환성이 중요한 이유 PDF | HTML 26 Jan 2024
Technical article Three key considerations for the next generation of HMI (Rev. A) PDF | HTML 23 Jan 2024
Application note Enabling Matter on Sitara MPU 17 Jan 2024
Technical article Why interoperability matters to an evolving EV charging market PDF | HTML 05 Jan 2024
Application note Hardware Design Guide for AM625 / AM623 / AM625SIP / AM625-Q1 / AM620-Q1 Family of Processors (Rev. B) PDF | HTML 01 Dec 2023
Application note Display Interfaces: A Comprehensive Guide to Sitara MPU Visualization Designs PDF | HTML 30 Nov 2023
Application note Using TSN Ethernet Features to Improve Timing in Industrial Ethernet Controllers PDF | HTML 15 Nov 2023
White paper Securing Arm-Based Application Processors (Rev. E) 09 Nov 2023
Functional safety information AM6x, AM24x Software Diagnostics Library TUV SUD Functional Safety Certificate 07 Nov 2023
Application note MSPM0 – ADC Attach on AM62x using SPI PDF | HTML 20 Oct 2023
Application brief Keyword Spotting Using AI at the Edge With Sitara Processors PDF | HTML 28 Sep 2023
Application note Powering the AM62x with the TPS65219 PMIC (Rev. B) PDF | HTML 06 Sep 2023
Application note Sitara Processor Power Distribution Networks: Implementation and Analysis (Rev. G) PDF | HTML 28 Aug 2023
Application brief Development Platform for a Smart, Connected AC Level 2 EV Charging Station PDF | HTML 11 Jul 2023
Product overview How to Develop With Flutter™ on the AM62 SK EVM PDF | HTML 16 Jun 2023
Application note AM62x Maximum Current Ratings PDF | HTML 18 Apr 2023
Application note High-Speed Interface Layout Guidelines (Rev. J) PDF | HTML 24 Feb 2023
Application note Discrete Power Solution for AM62x PDF | HTML 10 Nov 2022
Application note PRU-ICSS Feature Comparison (Rev. G) PDF | HTML 11 Oct 2022
Application note AM62x (AMC) PCB Escape Routing PDF | HTML 22 Sep 2022
Application note Sitara™ AM62x Benchmarks PDF | HTML 27 Jul 2022
Product overview Voltage Translation Application Quick Reference PDF | HTML 28 Jun 2022
Technical article Top 3 design considerations for EV charging PDF | HTML 20 Jun 2022
White paper AM62x 프로세서를 이용해 저전력 임베디드 시스템 지원 PDF | HTML 13 Jun 2022
White paper Für energieeffiziente integrierte Systeme mit AM62x-Prozessoren PDF | HTML 13 Jun 2022
White paper 透過 AM62x 處理器啟用低功耗嵌入式系統 PDF | HTML 13 Jun 2022
White paper Enabling Low Power Embedded Systems With AM62x Processors PDF | HTML 31 May 2022
Application note AM62x Extended Power-On Hours PDF | HTML 13 May 2022
Application note AM62x Power Estimation Tool PDF | HTML 08 Apr 2022
Application note AM62x DDR Board Design and Layout Guidelines 09 Mar 2022
Application note AM62x PCB Escape Routing PDF | HTML 10 Dec 2021
White paper Time Sensitive Networking for Industrial Automation (Rev. C) 31 Jul 0202

Design & development

Please view the Design & development section on a desktop.

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos