SPRAD14 April   2022 AM67 , AM67A , AM68 , AM68A , AM69 , AM69A , DRA821U , DRA821U-Q1 , DRA829J , DRA829J-Q1 , DRA829V , DRA829V-Q1 , TDA4AEN-Q1 , TDA4AH-Q1 , TDA4AL-Q1 , TDA4AP-Q1 , TDA4APE-Q1 , TDA4VE-Q1 , TDA4VEN-Q1 , TDA4VH-Q1 , TDA4VL-Q1 , TDA4VM , TDA4VM-Q1 , TDA4VP-Q1 , TDA4VPE-Q1

 

  1.   Trademarks
  2. 1Introduction
  3. 2Dual TDA4 System
    1. 2.1 Dual TDA4x SoC System Diagram
    2. 2.2 System Consideration and BOM Optimization
  4. 3Camera Connection
    1. 3.1 Duplicate Front Camera Input to Two TDA4x SoCs
    2. 3.2 Connect Front Camera to Only one TDA4x
  5. 4Boot Sequence Solution
    1. 4.1 Boot Solution Based on Dual Flash
    2. 4.2 Boot Solution Based on Single Flash
  6. 5Multi-SoC Demo Based on PCIe
  7. 6References

Camera Connection

Generally, side view cameras and surround view cameras are connected and processed on two TDA4x SoCs . However, the front camera typically needs to implement more L2, L2+ functions such as Object Detection, Semantic Segmentation, Lane Keeping/Changing Assist and so on. When the computing power of one TDA4x SoC cannot support such multi-functional implementation, then front camera input needs to be routed to the second TDA4x SoCs for additional processing. This section introduces two methods to connect front camera to TDA4x SoCs.