SPRAD24 august   2023 AM2631 , AM2632 , AM2632-Q1 , AM2634 , AM2634-Q1 , AM263P4 , AM263P4-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
    1. 1.1 Key System Specifications
  5. 2AM263x Overview
    1. 2.1 AM263x Control Card and Traction System Framework
  6. 3Guide to Running TIDM-02014 Traction Inverter
    1. 3.1 Software Set-up
      1. 3.1.1 Code Composer Studio Project
      2. 3.1.2 Software Structure
    2. 3.2 Create Real Time Debug Interface
      1. 3.2.1 Confirm CCS Features
      2. 3.2.2 Create Target Configuration File
      3. 3.2.3 Add Serial Command Monitor Software
      4. 3.2.4 Launch Real Time Debug
    3. 3.3 Running the Code
      1. 3.3.1 Project Setup
      2. 3.3.2 Running the Application
    4. 3.4 Get Samples From ADC and Read Samples Through CCS
      1. 3.4.1 Register and Enable Interrupt
      2. 3.4.2 Add Log Code to Read Samples in Graph at Fixed Rate
      3. 3.4.3 Read ADC Samples in Expression and Graph Windows
    5. 3.5 Generate Space Vector PWM and Drive Motor in Open Loop
      1. 3.5.1 Setup SVPWM Generator Inputs
      2. 3.5.2 Read SVPWM Duty Cycles in Graph Window
      3. 3.5.3 Power Up Inverter and Spin Motor in Open Loop
    6. 3.6 Close Current Loop With Mock Speed
      1. 3.6.1 Add Transformations and Read Id-Iq in Open Loop
      2. 3.6.2 Add Controllers to Close Current Loop
      3. 3.6.3 Read Id-Iq to Close Current Loop
    7. 3.7 Add Software Resolver to Digital Converter
      1. 3.7.1 Generate Excitation for Resolver Hardware
      2. 3.7.2 Add Resolver Software
      3. 3.7.3 Read Resolver Software Outputs
  7. 4Brief Guide to Code Migration
    1. 4.1 SDK Resources Overview
    2. 4.2 Code Migration From C28
    3. 4.3 Code Migration From AM24
  8. 5Summary
  9. 6References

Add Resolver Software

The software resolver is implemented similar to C28 in TIDM-02014. There are two functions listed as the following. Line 1 is to initialize resolver structure, and line 2 is to compute angle and speed. After initialize the structure, implementation details need to be updated according to features of resolver hardware. More details can be found in the structure definition.

  1. static inline void resolver_init(Resolver_t *resolver);
  2. static inline void resolver_run(Resolver_t *resolver);

Note that there are many ways to implement math functions like sin/cos. In this implementation, sin/cos functions for resolver phase lock loop inputs are moved out of "resolver_run" so that it is easier to find out all math functions and make changes. The following line 1 and 2 must be called before the above line 2. Standard C library functions are used here as an example.

  1. resolver1.res_theta0_sin = sinf(resolver1.res_theta0);
  2. resolver1.res_theta0_cos = cosf(resolver1.res_theta0);