SPRAD24 august   2023 AM2631 , AM2632 , AM2632-Q1 , AM2634 , AM2634-Q1 , AM263P4 , AM263P4-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
    1. 1.1 Key System Specifications
  5. 2AM263x Overview
    1. 2.1 AM263x Control Card and Traction System Framework
  6. 3Guide to Running TIDM-02014 Traction Inverter
    1. 3.1 Software Set-up
      1. 3.1.1 Code Composer Studio Project
      2. 3.1.2 Software Structure
    2. 3.2 Create Real Time Debug Interface
      1. 3.2.1 Confirm CCS Features
      2. 3.2.2 Create Target Configuration File
      3. 3.2.3 Add Serial Command Monitor Software
      4. 3.2.4 Launch Real Time Debug
    3. 3.3 Running the Code
      1. 3.3.1 Project Setup
      2. 3.3.2 Running the Application
    4. 3.4 Get Samples From ADC and Read Samples Through CCS
      1. 3.4.1 Register and Enable Interrupt
      2. 3.4.2 Add Log Code to Read Samples in Graph at Fixed Rate
      3. 3.4.3 Read ADC Samples in Expression and Graph Windows
    5. 3.5 Generate Space Vector PWM and Drive Motor in Open Loop
      1. 3.5.1 Setup SVPWM Generator Inputs
      2. 3.5.2 Read SVPWM Duty Cycles in Graph Window
      3. 3.5.3 Power Up Inverter and Spin Motor in Open Loop
    6. 3.6 Close Current Loop With Mock Speed
      1. 3.6.1 Add Transformations and Read Id-Iq in Open Loop
      2. 3.6.2 Add Controllers to Close Current Loop
      3. 3.6.3 Read Id-Iq to Close Current Loop
    7. 3.7 Add Software Resolver to Digital Converter
      1. 3.7.1 Generate Excitation for Resolver Hardware
      2. 3.7.2 Add Resolver Software
      3. 3.7.3 Read Resolver Software Outputs
  7. 4Brief Guide to Code Migration
    1. 4.1 SDK Resources Overview
    2. 4.2 Code Migration From C28
    3. 4.3 Code Migration From AM24
  8. 5Summary
  9. 6References

Add Log Code to Read Samples in Graph at Fixed Rate

As the time spent on communication between SoC and CCS is not deterministic, it is necessary to have a log recording values from the interrupt at a given sample rate. This is critical for observation data via graph window. A simple log is implemented. There are 16 pointers available to 16 global variables. Before the hardware interrupt starts, the pointers need to be assigned to either global variables or NULL. The following lines need to be called. Line 1 is called after the assignment of pointers. Line 2 is called after all computation is completed every interrupt. There is a scale, named gLogScaler, implemented in the line 2 function. It represents how many interrupts are skipped between two logging points. By setting the global variable, data can be logged at frequencies lower than or equal to the interrupt frequency.

  1. LoopLog_init();
  2. LoopLog_run();