SPRAD58A September 2022 – February 2023 AM2631 , AM2631-Q1 , AM2632 , AM2632-Q1 , AM2634 , AM2634-Q1 , UCC14130-Q1 , UCC14131-Q1 , UCC14140-Q1 , UCC14141-Q1 , UCC14240-Q1 , UCC14241-Q1 , UCC14340-Q1 , UCC14341-Q1 , UCC15240-Q1 , UCC15241-Q1 , UCC5870-Q1 , UCC5871-Q1 , UCC5880-Q1 , UCC5881-Q1
This technical white paper explores key system trends, architecture, and technology for traction inverters. The devices and technologies used to enable traction inverters, including isolation, high-voltage domain, and low-voltage domain technology, are also covered. Finally, the document focuses on the system engineering concepts and designs to accelerate traction inverter design time.
The traction inverter is the heart of an electric vehicle (EV) drivetrain system. As such, the inverter plays a vital role in increasing the adoption of EVs worldwide. The traction motor provides excellent torque and acceleration by converting DC power from the batteries or generator to AC power to power traction drive motors such as permanent magnetic machines (PMSM), induction motors (IM), externally excited synchronous motors (EESM), and switched reluctance motors (SRM). A traction inverter also converts recuperation energy from the motor and recharges the battery while the vehicle is coasting or braking.
There are several key design priorities and trade-offs to consider when measuring the performance of the traction inverter: