SPRAD62 February   2023 F29H850TU , F29H859TU-Q1 , TMS320F280023C , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280038C-Q1 , TMS320F280039C , TMS320F280039C-Q1 , TMS320F28386D , TMS320F28386D-Q1 , TMS320F28386S , TMS320F28386S-Q1 , TMS320F28388D , TMS320F28388S , TMS320F28P650DH , TMS320F28P650DK , TMS320F28P650SH , TMS320F28P650SK , TMS320F28P659DH-Q1 , TMS320F28P659DK-Q1 , TMS320F28P659SH-Q1

 

  1.   Abstract
  2.   Trademarks
  3. 1Introduction
  4. 2Serial Port Design Methodology
    1. 2.1 Step 1: Understand Design Requirements
    2. 2.2 Step 2: Identify Required Inputs to the CLB Tile
      1. 2.2.1 GPIO Input Qualification
      2. 2.2.2 CLB Input Settings
    3. 2.3 Step 3: Identify Required Outputs from CLB Logic
      1. 2.3.1 Synchronizing Outputs Signals
      2. 2.3.2 Output Signal Conditioning
    4. 2.4 Step 4: Design the CLB Logic
      1. 2.4.1 Resource Allocation
      2. 2.4.2 Exchanging Data Between CLB FIFOs and MCU RAM
      3. 2.4.3 CLB Logic Status and Trigger Flags
        1. 2.4.3.1 Status/Flag Bits
        2. 2.4.3.2 Trigger Bits
    5. 2.5 Step 5: Simulate the Logic Design
    6. 2.6 Step 6: Test the CLB Logic
  5. 3Example A: Using the CLB to Input and Output a TDM Stream in Audio Applications
    1. 3.1 Example Overview
    2. 3.2 Step 1: Understand Design Requirements
    3. 3.3 Step 2: Identify Required Inputs to the CLB Tile
    4. 3.4 Step 3: Identify Required Outputs from CLB Logic
    5. 3.5 Step 4: Design the CLB Logic
      1. 3.5.1 Resource Allocation
      2. 3.5.2 TDM Word Counter
      3. 3.5.3 FSYNC and DATA1 Output Synchronization
    6. 3.6 Step 5: Simulate the Logic Design
    7. 3.7 Step 6: Test the CLB Logic
      1. 3.7.1 Hardware Setup and Connections
      2. 3.7.2 Software Setup
      3. 3.7.3 Testing Output Setup and Hold Times
      4. 3.7.4 Testing Data Integrity
  6. 4Example B: Using the CLB to Implement a Custom Communication Bus for LED Driver in Lighting Applications
    1. 4.1 Example Overview
    2. 4.2 Step 1: Understand Design Requirements
    3. 4.3 Step 2: Identify Required Inputs to the CLB Tile
    4. 4.4 Step 3: Identify Required Outputs From CLB Logic
    5. 4.5 Step 4: Design the CLB Logic
      1. 4.5.1 TX Tile Logic
      2. 4.5.2 RX Tile Logic
      3. 4.5.3 Data Clocking
    6. 4.6 Step 5: Simulate the Logic Design
    7. 4.7 Step 6: Test the CLB Logic
      1. 4.7.1 Hardware Setup and Connections
      2. 4.7.2 Software Setup
      3. 4.7.3 Testing Output Setup and Hold Times
  7. 5References

Example Overview

In this example, a C2000 real-time microcontroller is used to display a simple pattern on a 16 x 16 RGB LED matrix display. The LED matrix display is driven by one LP5891-Q1 LED driver that communicates with the C2000 real-time microcontroller using a serial bus.

Two CLB tiles are used to support the Continuous Clock Series Interface (CCSI) bus protocol required to communicate with the LP5891-Q1 LED driver devices. The CLB-based CCSI bus implementation requires minimum CPU overhead to encode a bus frame since the IDLE, START, END, and CHECK bits required to communicate across the CCSI bus are automatically added by the CLB.

The example code can be modified to cascade an additional LED matrix display.

Figure 4-1 Block Diagram for LED Matrix Example