SPRSP93 November 2024 F29H850TU , F29H859TU-Q1
ADVANCE INFORMATION
The F29H85x and F29P58x are members of the C2000™ real-time microcontroller family of scalable, ultra-low latency devices designed for efficiency in power electronics, including but not limited to: high power density, high switching frequencies, and supporting the use of GaN and SiC technologies.
These include such applications as:
The real-time control subsystem has up to three 200MHz C29x DSP cores. The C29x supports 32-bit and 64-bit floating- and fixed-point signal-processing running from on-chip flash or RAM. The C29x CPU is boosted by trigonometric math instructions, speeding up common algorithms key to real-time control systems.
Many features are included to support a system-level ASIL-D functional safety solution. The C29x CPU1 and CPU2 cores can be put in lockstep for detection of permanent and transient faults. Logic Power-On Self-Test (LPOST) and Memory Power-On Self-Test (MPOST) provide start-up detection of latent faults. Safe interconnects provide fault detection between the CPU and the peripherals. The ADC safety checker compares ADC conversion results from multiple ADC modules without additional CPU cycles. The Waveform Analyzer and Diagnostic (WADI) can monitor multiple signals for proper operation and take action to ensure a safe state is maintained. The device architecture features a Safe Interconnect (SIC) for end-to-end code and data safety, with CPU-based ECC protection for all memories and peripheral endpoints.
Hardware Security Manager (HSM) provides EVITA-full security support. Features include Secure Boot, secure storage and keyring support, secure debug authentication, and cryptographic accelerator engines. The HSM enables secure key and code provisioning in untrusted factory environments, and supports Firmware-Over-The-Air updates of HSM and host application firmware, with A/B swap capability and rollback control.
SSU (Safety and Security unit) enables superior run-time safety and security features. This feature can be used create safety isolation (Freedom From Interference) among the threads running on same CPU or different CPUs. The SSU features a context-sensitive MPU mechanism that automatically switches access permissions in hardware based on currently executing thread or task. This eliminates software overhead, enabling real-time code performance without compromising system safety. The SSU provides multi-user debug authentication, and also supports Live Firmware Update (LFU) and FOTA fpr application firmware updates with A/B swap and rollback control.
High-performance analog blocks are tightly integrated with the processing and control units to provide optimal real-time signal chain performance. Two 16-bit Analog-to-Digital Converters (ADC) and three 12-bit ADCs have up to 80 analog channels as well as an integrated post-processing block and hardware oversampling. Two 12-bit buffered DACs and twenty-four comparator channels are available.
Thirty-six frequency-independent PWMs, all with high-resolution capability, enable control of multiple power stages, from 3-phase inverters to advanced multilevel power topologies. The PWMs have been enhanced with Minimum Dead-Band Logic (MINDL), Diode Emulation (DE), and Illegal Combo Logic (ICL) features.
The Configurable Logic Block (CLB) allows the user to add custom logic and potentially integrateFPGA-like functions into the C2000 real-time MCU.
An EtherCAT SubDevice Controller, Ethernet MAC, and other industry-standard protocols like CAN FD are available on this device. The Fast Serial Interface (FSI) enables up to 200Mbps of robust communications across an isolation boundary.
Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check out The Essential Guide for Developing With C2000™ Real-Time Microcontrollers and visit the C2000 real-time microcontrollers page.
The Getting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guide covers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered.
Ready to get started? Check out the F29H85X-SOM-EVM evaluation board, and download the MCU-SDK-F29H85x software development kit.