SPRUIY2 November   2024 F29H850TU , F29H859TU-Q1

 

  1.   1
  2.   Read This First
    1.     About This Manual
    2.     Related Documentation from Texas Instruments
    3.     Glossary
    4.     Support Resources
    5.     Trademarks
  3. 1Architecture Overview
    1. 1.1 Introduction to the CPU
    2. 1.2 Data Type
    3. 1.3 C29x CPU System Architecture
      1. 1.3.1 Emulation Logic
      2. 1.3.2 CPU Interface Buses
    4. 1.4 Memory Map
  4. 2Central Processing Unit (CPU)
    1. 2.1 C29x CPU Architecture
      1. 2.1.1 Features
      2. 2.1.2 Block Diagram
    2. 2.2 CPU Registers
      1. 2.2.1 Addressing Registers (Ax/XAx)
      2. 2.2.2 Fixed-Point Registers (Dx/XDx)
      3. 2.2.3 Floating Point Register (Mx/XMx)
      4. 2.2.4 Program Counter (PC)
      5. 2.2.5 Return Program Counter (RPC)
      6. 2.2.6 Status Registers
        1. 2.2.6.1 Interrupt Status Register (ISTS)
        2. 2.2.6.2 Decode Phase Status Register (DSTS)
        3. 2.2.6.3 Execute Phase Status Register (ESTS)
    3. 2.3 Instruction Packing
      1. 2.3.1 Standalone Instructions and Restrictions
      2. 2.3.2 Instruction Timeout
    4. 2.4 Stacks
      1. 2.4.1 Software Stack
      2. 2.4.2 Protected Call Stack
      3. 2.4.3 Real Time Interrupt / NMI Stack
  5. 3Interrupts
    1. 3.1 CPU Interrupts Architecture Block Diagram
    2. 3.2 RESET, NMI, RTINT, and INT
      1. 3.2.1 RESET (CPU reset)
      2. 3.2.2 NMI (Non-Maskable Interrupt)
      3. 3.2.3 RTINT (Real Time Interrupt)
      4. 3.2.4 INT (Low-Priority Interrupt)
    3. 3.3 Conditions Blocking Interrupts
      1. 3.3.1 ATOMIC Counter
    4. 3.4 CPU Interrupt Control Registers
      1. 3.4.1 Interrupt Status Register (ISTS)
      2. 3.4.2 Decode Phase Status Register (DSTS)
      3. 3.4.3 Interrupt-Related Stack Registers
    5. 3.5 Interrupt Nesting
      1. 3.5.1 Interrupt Nesting Example Diagram
    6. 3.6 Security
      1. 3.6.1 Overview
      2. 3.6.2 LINK
      3. 3.6.3 STACK
      4. 3.6.4 ZONE
  6. 4Pipeline
    1. 4.1  Introduction
    2. 4.2  Decoupled Pipeline Phases
    3. 4.3  Dual Instruction Prefetch Buffers
    4. 4.4  Pipeline Advancement and Stalls
    5. 4.5  Pipeline Hazards and Protection Mechanisms
    6. 4.6  Register Updates and Corresponding Pipeline Phases
    7. 4.7  Register Reads and Writes During Normal Operation
    8. 4.8  D2 Read Protection
    9. 4.9  E1 Read Protection
    10. 4.10 WAW Protection
    11. 4.11 Protection During Interrupt
  7. 5Addressing Modes
    1. 5.1 Addressing Modes Overview
      1. 5.1.1 Documentation and Implementation
      2. 5.1.2 List of Addressing Mode Types
        1. 5.1.2.1 Additional Types of Addressing
      3. 5.1.3 Addressing Modes Summarized
    2. 5.2 Addressing Mode Fields
      1. 5.2.1 ADDR1 Field
      2. 5.2.2 ADDR2 Field
      3. 5.2.3 ADDR3 Field
      4. 5.2.4 DIRM Field
      5. 5.2.5 Additional Fields
    3. 5.3 Alignment and Pipeline Considerations
      1. 5.3.1 Alignment
      2. 5.3.2 Pipeline Considerations
    4. 5.4 Types of Addressing Modes
      1. 5.4.1 Direct Addressing
      2. 5.4.2 Pointer Addressing
        1. 5.4.2.1 Pointer Addressing with #Immediate Offset
        2. 5.4.2.2 Pointer Addressing with Pointer Offset
        3. 5.4.2.3 Pointer Addressing with #Immediate Increment/Decrement
        4. 5.4.2.4 Pointer Addressing with Pointer Increment/Decrement
      3. 5.4.3 Stack Addressing
        1. 5.4.3.1 Allocating and De-allocating Stack Space
      4. 5.4.4 Circular Addressing Instruction
      5. 5.4.5 Bit Reversed Addressing Instruction
  8. 6Safety and Security Unit (SSU)
    1. 6.1 SSU Overview
    2. 6.2 Links and Task Isolation
    3. 6.3 Sharing Data Outside Task Isolation Boundary
    4. 6.4 Protected Call and Return
  9. 7Emulation
    1. 7.1 Overview of Emulation Features
    2. 7.2 Debug Terminology
    3. 7.3 Debug Interface
    4. 7.4 Execution Control Mode
    5. 7.5 Breakpoints, Watchpoints, and Counters
      1. 7.5.1 Software Breakpoint
      2. 7.5.2 Hardware Debugging Resources
        1. 7.5.2.1 Hardware Breakpoint
        2. 7.5.2.2 Hardware Watchpoint
        3. 7.5.2.3 Benchmark Counters
      3. 7.5.3 PC Trace
  10. 8Revision History

List of Addressing Mode Types

The following lists the types of addressing modes available natively in the device. For more details on each of these addressing modes, see Section 5.4.

  1. Direct Addressing: direct read or write access to any location in the 32-bit memory space with the immediate address provided in the instruction.
  2. Pointer Addressing with #Immediate Offset: indirect read or write access to any location in the 32-bit memory space with the pointer address from one of the addressing registers, A0 to A14, and an optional immediate offset provided in the instruction.
  3. Pointer Addressing with Pointer Offset: indirect read or write access to any location in the 32-bit memory space with the pointer address (base address register) from one of the addressing registers, A0 to A14, and an offset provided by an additional pointer (index register) in the instruction.
  4. Pointer Addressing with #Immediate Increment/Decrement: indirect read or write access to any location in the 32-bit memory space with the pointer address from one of the addressing registers, A0 to A14. An immediate pre or post increment or decrement of the register is applied.
  5. Pointer Addressing with Pointer Increment/Decrement: indirect read or write access to any location in the 32-bit memory space with the pointer address from one of the addressing registers, A0 to A14, and a pre or post increment or decrement of the register is applied using the value located in an additional pointer register.
  6. Stack Addressing: indirect read or write access to any location in the stack space with the address provided in addressing register A15, which is the dedicated Stack Pointer (SP).

The types of addressing modes can be implemented using different combinations of offsets and shifts. All available addressing modes are provided as rows in Section 5.1.3.

Note: Addressing register A15 is the dedicated Stack Pointer (SP). Any references to the "Stack Pointer" or "SP" in this document are referring to addressing register A15.