SPRUIY2 November   2024 F29H850TU , F29H859TU-Q1

 

  1.   1
  2.   Read This First
    1.     About This Manual
    2.     Related Documentation from Texas Instruments
    3.     Glossary
    4.     Support Resources
    5.     Trademarks
  3. 1Architecture Overview
    1. 1.1 Introduction to the CPU
    2. 1.2 Data Type
    3. 1.3 C29x CPU System Architecture
      1. 1.3.1 Emulation Logic
      2. 1.3.2 CPU Interface Buses
    4. 1.4 Memory Map
  4. 2Central Processing Unit (CPU)
    1. 2.1 C29x CPU Architecture
      1. 2.1.1 Features
      2. 2.1.2 Block Diagram
    2. 2.2 CPU Registers
      1. 2.2.1 Addressing Registers (Ax/XAx)
      2. 2.2.2 Fixed-Point Registers (Dx/XDx)
      3. 2.2.3 Floating Point Register (Mx/XMx)
      4. 2.2.4 Program Counter (PC)
      5. 2.2.5 Return Program Counter (RPC)
      6. 2.2.6 Status Registers
        1. 2.2.6.1 Interrupt Status Register (ISTS)
        2. 2.2.6.2 Decode Phase Status Register (DSTS)
        3. 2.2.6.3 Execute Phase Status Register (ESTS)
    3. 2.3 Instruction Packing
      1. 2.3.1 Standalone Instructions and Restrictions
      2. 2.3.2 Instruction Timeout
    4. 2.4 Stacks
      1. 2.4.1 Software Stack
      2. 2.4.2 Protected Call Stack
      3. 2.4.3 Real Time Interrupt / NMI Stack
  5. 3Interrupts
    1. 3.1 CPU Interrupts Architecture Block Diagram
    2. 3.2 RESET, NMI, RTINT, and INT
      1. 3.2.1 RESET (CPU reset)
      2. 3.2.2 NMI (Non-Maskable Interrupt)
      3. 3.2.3 RTINT (Real Time Interrupt)
      4. 3.2.4 INT (Low-Priority Interrupt)
    3. 3.3 Conditions Blocking Interrupts
      1. 3.3.1 ATOMIC Counter
    4. 3.4 CPU Interrupt Control Registers
      1. 3.4.1 Interrupt Status Register (ISTS)
      2. 3.4.2 Decode Phase Status Register (DSTS)
      3. 3.4.3 Interrupt-Related Stack Registers
    5. 3.5 Interrupt Nesting
      1. 3.5.1 Interrupt Nesting Example Diagram
    6. 3.6 Security
      1. 3.6.1 Overview
      2. 3.6.2 LINK
      3. 3.6.3 STACK
      4. 3.6.4 ZONE
  6. 4Pipeline
    1. 4.1  Introduction
    2. 4.2  Decoupled Pipeline Phases
    3. 4.3  Dual Instruction Prefetch Buffers
    4. 4.4  Pipeline Advancement and Stalls
    5. 4.5  Pipeline Hazards and Protection Mechanisms
    6. 4.6  Register Updates and Corresponding Pipeline Phases
    7. 4.7  Register Reads and Writes During Normal Operation
    8. 4.8  D2 Read Protection
    9. 4.9  E1 Read Protection
    10. 4.10 WAW Protection
    11. 4.11 Protection During Interrupt
  7. 5Addressing Modes
    1. 5.1 Addressing Modes Overview
      1. 5.1.1 Documentation and Implementation
      2. 5.1.2 List of Addressing Mode Types
        1. 5.1.2.1 Additional Types of Addressing
      3. 5.1.3 Addressing Modes Summarized
    2. 5.2 Addressing Mode Fields
      1. 5.2.1 ADDR1 Field
      2. 5.2.2 ADDR2 Field
      3. 5.2.3 ADDR3 Field
      4. 5.2.4 DIRM Field
      5. 5.2.5 Additional Fields
    3. 5.3 Alignment and Pipeline Considerations
      1. 5.3.1 Alignment
      2. 5.3.2 Pipeline Considerations
    4. 5.4 Types of Addressing Modes
      1. 5.4.1 Direct Addressing
      2. 5.4.2 Pointer Addressing
        1. 5.4.2.1 Pointer Addressing with #Immediate Offset
        2. 5.4.2.2 Pointer Addressing with Pointer Offset
        3. 5.4.2.3 Pointer Addressing with #Immediate Increment/Decrement
        4. 5.4.2.4 Pointer Addressing with Pointer Increment/Decrement
      3. 5.4.3 Stack Addressing
        1. 5.4.3.1 Allocating and De-allocating Stack Space
      4. 5.4.4 Circular Addressing Instruction
      5. 5.4.5 Bit Reversed Addressing Instruction
  8. 6Safety and Security Unit (SSU)
    1. 6.1 SSU Overview
    2. 6.2 Links and Task Isolation
    3. 6.3 Sharing Data Outside Task Isolation Boundary
    4. 6.4 Protected Call and Return
  9. 7Emulation
    1. 7.1 Overview of Emulation Features
    2. 7.2 Debug Terminology
    3. 7.3 Debug Interface
    4. 7.4 Execution Control Mode
    5. 7.5 Breakpoints, Watchpoints, and Counters
      1. 7.5.1 Software Breakpoint
      2. 7.5.2 Hardware Debugging Resources
        1. 7.5.2.1 Hardware Breakpoint
        2. 7.5.2.2 Hardware Watchpoint
        3. 7.5.2.3 Benchmark Counters
      3. 7.5.3 PC Trace
  10. 8Revision History

DIRM Field

DIRM Field

This is a 33-bit encoding used for direct and indirect encoding of addresses used only for "Direct Addressing" and “Pointer Addressing With #Immediate Offset.”

Table 5-5 shows the various ways the 12 bits can be used to encode the address.

Table 5-5 DIRM Field Encodings
DIRM Field: (Ax = A0 to A14)
Mnemonic Address Generation 0 31:20 19:16 47:32
*(0:#u32imm) @u32imm addr = #u32imm 0 #u32imm
*(Ax+#u28imm) *Ax[#u28imm] addr = Ax + #u28imm (#u28imm = 0 to 256MB range) 1 #u28imm (lower 12-bits) Ax[0-14] 1 #u28imm (upper 16-bits)
The Ax[0-14] addressing field can support the A15 register, however this is the stack pointer (SP) register and for some of the addressing modes, the operation is not valid for the SP and hence the addressing mode can not be used.

The following are the instructions that can use the DIRM field:

LD.32, LD.64, LD.B0, LD.B1, LD.B2, LD.B3, LD.S16, LD.S8, LD.U16, LD.U8, LD.W0, LD.W1, S16TOF, ST.32, ST.64, ST.B0, ST.B1, ST.B2, ST.B3, ST.W0, ST.W1, U16TOF

Examples:

; Bits [7:0] of register Ax are loaded with the 8-bit value at the memory 
; location addressed using the DIRM addressing mode. DIRM is supplied with a 
; 32-bit unsigned immediate value found in parklSine:
; parklSine = 0x00008000
LD.B0 Ax,DIRM               ; field
LD.B0 Ax,@u32imm            ; addressing mode
LD.B0 A8,@parklSine         ; actual assembly

; The upper 16-bit content of register Ax is stored at the memory location 
; addressed using the DIRM addressing mode. The DIRM field is replaced with
; the "*(Ax+#u28imm)" addressing mode, where the address is found using
; base pointer Ax and the #u28imm immediate value.
ST.W1 DIRM,Ax               ; field
ST.W1 *(Ax+#u28imm),A10     ; addressing mode
ST.W1 *(A3+#0x4),A10        ; actual assembly