SPRUJ60A April   2024  – October 2024 TMS320F28P550SJ , TMS320F28P559SJ-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Feature Differences Between F280013x/15x and F28P55x
    1. 1.1 F280013x/15x and F28P55x Feature Comparison
  5. 2PCB Hardware Changes
    1. 2.1 PCB Hardware Changes for the 80-Pin PN/PNA, 64-Pin PM Packages
    2. 2.2 80-Pin PNA, 64-Pin PM Migration Between F280013x/15x and F28P55x For New and Existing PCB
  6. 3Feature Differences for System Consideration
    1. 3.1 New Features in F28P55x
      1. 3.1.1  Advance Encryption Standard (AES)
      2. 3.1.2  Universal Serial Bus (USB)
      3. 3.1.3  Configurable Logic Block (CLB)
      4. 3.1.4  Live Firmware Update (LFU)
      5. 3.1.5  Programmable Gain Amplifier (PGA)
      6. 3.1.6  ERAD
      7. 3.1.7  FSI
      8. 3.1.8  5V Failsafe IOs
      9. 3.1.9  Flash Write Protection
      10. 3.1.10 Neural-Network Processing Unit (NPU)
    2. 3.2 Communication Module Changes
    3. 3.3 Control Module Changes
    4. 3.4 Analog Module Differences
    5. 3.5 Other Device Changes
      1. 3.5.1 PLL
      2. 3.5.2 PIE Channel Mapping
      3. 3.5.3 Bootrom
    6. 3.6 Power Management
      1. 3.6.1 LDO/VREG
      2. 3.6.2 POR/BOR
      3. 3.6.3 Power Consumption
    7. 3.7 Memory Module Changes
    8. 3.8 GPIO Multiplexing Changes
    9. 3.9 Analog Multiplexing Changes
  7. 4Application Code Migration From F280013x/15x to F28P55x
    1. 4.1 C2000Ware Header Files
    2. 4.2 Linker Command Files
    3. 4.3 C2000Ware Examples
  8. 5Specific Use Cases Related to F28P55x New Features
    1. 5.1 AES
    2. 5.2 PGA
    3. 5.3 USB
  9. 6EABI Support
    1. 6.1 Flash API
  10. 7References
  11. 8Revision History

Neural-Network Processing Unit (NPU)

The Neural-network Processing Unit (NPU) supports intelligent inferencing running pre-trained models. Capable of 600–1200MOPS (Mega Operations Per Second), the NPU provides up to 10x Neural Network (NN) inferencing cycle improvement versus a software only based implementation. Using TI supplied tools, users can train and evaluate models as well as acquire and visualize the data stream from the MCU. The model is then compiled to a standalone library that is added to the main project to utilize the NPU in a system.