SPRUJ79 November   2024 F29H850TU , F29H859TU-Q1

 

  1.   1
  2.   Read This First
    1.     About This Manual
    2.     Notational Conventions
    3.     Glossary
    4.     Related Documentation From Texas Instruments
    5.     Support Resources
    6.     Trademarks
  3. ► C29x SYSTEM RESOURCES
    1.     Technical Reference Manual Overview
  4. F29x Processor
    1. 2.1 CPU Architecture
      1. 2.1.1 C29x Related Collateral
    2. 2.2 Lock and Commit Registers
    3. 2.3 C29x CPU Registers
      1. 2.3.1 C29CPU Base Address Table
      2. 2.3.2 C29_RTINT_STACK Registers
      3. 2.3.3 C29_SECCALL_STACK Registers
      4. 2.3.4 C29_SECURE_REGS Registers
      5. 2.3.5 C29_DIAG_REGS Registers
      6. 2.3.6 C29_SELFTEST_REGS Registers
  5. System Control and Interrupts
    1. 3.1  C29x System Control Introduction
    2. 3.2  System Control Functional Description
      1. 3.2.1 Device Identification
      2. 3.2.2 Device Configuration Registers
    3. 3.3  Resets
      1. 3.3.1 Reset Sources
      2. 3.3.2 External Reset (XRS)
      3. 3.3.3 Simulate External Reset
      4. 3.3.4 Power-On Reset (POR)
      5. 3.3.5 Debugger Reset (SYSRS)
      6. 3.3.6 Watchdog Reset (WDRS)
      7. 3.3.7 ESM NMI Watchdog Reset (NMIWDRS)
      8. 3.3.8 EtherCAT Slave Controller (ESC) Module Reset Output
    4. 3.4  Safety Features
      1. 3.4.1 Write Protection on Registers
        1. 3.4.1.1 LOCK Protection on System Configuration Registers
        2. 3.4.1.2 EALLOW Protection
      2. 3.4.2 PIPE Vector Address Validity Check
      3. 3.4.3 NMIWDs
      4. 3.4.4 System Control Registers Parity Protection
      5. 3.4.5 ECC Enabled RAMs, Shared RAMs Protection
      6. 3.4.6 ECC Enabled Flash Memory
      7. 3.4.7 ERRORSTS Pin
    5. 3.5  Clocking
      1. 3.5.1 Clock Sources
        1. 3.5.1.1 Primary Internal Oscillator (INTOSC2)
        2. 3.5.1.2 Backup Internal Oscillator (INTOSC1)
        3. 3.5.1.3 External Oscillator (XTAL)
        4. 3.5.1.4 Auxiliary Clock Input (AUXCLKIN)
      2. 3.5.2 Derived Clocks
        1. 3.5.2.1 Oscillator Clock (OSCCLK)
        2. 3.5.2.2 System PLL Output Clock (PLLRAWCLK)
      3. 3.5.3 Device Clock Domains
        1. 3.5.3.1 System Clock (PLLSYSCLK)
        2. 3.5.3.2 CPU Clock (CPUCLK)
        3. 3.5.3.3 Peripheral Clock (PERx.SYSCLK)
        4. 3.5.3.4 MCAN Bit Clock
        5. 3.5.3.5 CPU Timer2 Clock (TIMER2CLK)
      4. 3.5.4 External Clock Output (XCLKOUT)
      5. 3.5.5 Clock Connectivity
      6. 3.5.6 Using an External Crystal or Resonator
        1. 3.5.6.1 X1/X2 Precondition Circuit
      7. 3.5.7 PLL
        1. 3.5.7.1 System Clock Setup
        2. 3.5.7.2 SYS PLL Bypass
      8. 3.5.8 Clock (OSCCLK) Failure Detection
        1. 3.5.8.1 Missing Clock Detection Logic
        2. 3.5.8.2 Dual Clock Comparator (DCC)
    6. 3.6  Bus Architecture
      1. 3.6.1 Safe Interconnect
        1. 3.6.1.1 Safe Interconnect for Read Operation
        2. 3.6.1.2 Safe Interconnect for Write Operation
      2. 3.6.2 Peripheral Access Configuration using FRAMESEL
      3. 3.6.3 Bus Arbitration
    7. 3.7  32-Bit CPU Timers 0/1/2
    8. 3.8  Watchdog Timers
      1. 3.8.1 Servicing the Watchdog Timer
      2. 3.8.2 Minimum Window Check
      3. 3.8.3 Watchdog Reset or Watchdog Interrupt Mode
      4. 3.8.4 Watchdog Operation in Low-Power Modes
      5. 3.8.5 Emulation Considerations
    9. 3.9  Low-Power Modes
      1. 3.9.1 IDLE
      2. 3.9.2 STANDBY
    10. 3.10 Memory Subsystem (MEMSS)
      1. 3.10.1 Introduction
      2. 3.10.2 Features
      3. 3.10.3 Configuration Bits
        1. 3.10.3.1 Memory Initialization
      4. 3.10.4 RAM
        1. 3.10.4.1  MEMSS Architecture
        2. 3.10.4.2  RAM Memory Controller Overview
        3. 3.10.4.3  Memory Controllers
          1. 3.10.4.3.1 128-Bit LPx and CPx Memory Controller
          2. 3.10.4.3.2 64-Bit LDx and CDx Memory Controller
          3. 3.10.4.3.3 M0 Memory Controller
        4. 3.10.4.4  RTDMA Burst Support
        5. 3.10.4.5  Atomic Memory Operations
        6. 3.10.4.6  RAM ECC
        7. 3.10.4.7  Read-Modify-Write Operations
        8. 3.10.4.8  Dataline Buffer
        9. 3.10.4.9  HSM Sync Bridge
        10. 3.10.4.10 Access Bridges
          1. 3.10.4.10.1 Debug Access Bridge
          2. 3.10.4.10.2 Global Access Bridge
          3. 3.10.4.10.3 Program Access Bridge
      5. 3.10.5 ROM
        1. 3.10.5.1 ROM Dataline Buffer
        2. 3.10.5.2 ROM Prefetch
      6. 3.10.6 Arbitration
      7. 3.10.7 Test Modes
      8. 3.10.8 Emulation Mode
    11. 3.11 System Control Register Configuration Restrictions
    12. 3.12 Software
      1. 3.12.1  SYSCTL Registers to Driverlib Functions
      2. 3.12.2  MEMSS Registers to Driverlib Functions
      3. 3.12.3  CPU Registers to Driverlib Functions
      4. 3.12.4  WD Registers to Driverlib Functions
      5. 3.12.5  CPUTIMER Registers to Driverlib Functions
      6. 3.12.6  XINT Registers to Driverlib Functions
      7. 3.12.7  LPOST Registers to Driverlib Functions
      8. 3.12.8  SYSCTL Examples
        1. 3.12.8.1 Missing clock detection (MCD) - SINGLE_CORE
        2. 3.12.8.2 XCLKOUT (External Clock Output) Configuration - SINGLE_CORE
      9. 3.12.9  TIMER Examples
        1. 3.12.9.1 Timer Academy Lab - SINGLE_CORE
        2. 3.12.9.2 CPU Timers - SINGLE_CORE
        3. 3.12.9.3 CPU Timers - SINGLE_CORE
      10. 3.12.10 WATCHDOG Examples
        1. 3.12.10.1 Watchdog - SINGLE_CORE
      11. 3.12.11 LPM Examples
        1. 3.12.11.1 Low Power Modes: Device Idle Mode and Wakeup using GPIO - SINGLE_CORE
        2. 3.12.11.2 Low Power Modes: Device Idle Mode and Wakeup using Watchdog - SINGLE_CORE
        3. 3.12.11.3 Low Power Modes: Device Standby Mode and Wakeup using GPIO - SINGLE_CORE
        4. 3.12.11.4 Low Power Modes: Device Standby Mode and Wakeup using Watchdog - SINGLE_CORE
    13. 3.13 SYSCTRL Registers
      1. 3.13.1  SYSCTRL Base Address Table
      2. 3.13.2  DEV_CFG_REGS Registers
      3. 3.13.3  MEMSS_L_CONFIG_REGS Registers
      4. 3.13.4  MEMSS_C_CONFIG_REGS Registers
      5. 3.13.5  MEMSS_M_CONFIG_REGS Registers
      6. 3.13.6  MEMSS_MISCI_REGS Registers
      7. 3.13.7  CPU_SYS_REGS Registers
      8. 3.13.8  CPU_PER_CFG_REGS Registers
      9. 3.13.9  WD_REGS Registers
      10. 3.13.10 CPUTIMER_REGS Registers
      11. 3.13.11 XINT_REGS Registers
  6. ROM Code and Peripheral Booting
    1. 4.1 Introduction
      1. 4.1.1 ROM Related Collateral
    2. 4.2 Device Boot Sequence
    3. 4.3 Device Boot Modes
      1. 4.3.1 Default Boot Modes
      2. 4.3.2 Custom Boot Modes
    4. 4.4 Device Boot Configurations
      1. 4.4.1 Configuring Boot Mode Pins
      2. 4.4.2 Configuring Boot Mode Table Options
      3. 4.4.3 Boot Mode Example Use Cases
        1. 4.4.3.1 Zero Boot Mode Select Pins
        2. 4.4.3.2 One Boot Mode Select Pin
        3. 4.4.3.3 Three Boot Mode Select Pins
    5. 4.5 Device Boot Flow Diagrams
      1. 4.5.1 Device Boot Flow
      2. 4.5.2 CPU1 Boot Flow
      3. 4.5.3 Emulation Boot Flow
      4. 4.5.4 Standalone Boot Flow
    6. 4.6 Device Reset and Exception Handling
      1. 4.6.1 Reset Causes and Handling
      2. 4.6.2 Exceptions and Interrupts Handling
    7. 4.7 Boot ROM Description
      1. 4.7.1  Boot ROM Configuration Registers
        1. 4.7.1.1 MPOST and LPOST Configurations
      2. 4.7.2  Entry Points
      3. 4.7.3  Wait Points
      4. 4.7.4  Memory Maps
        1. 4.7.4.1 Boot ROM Memory-Maps
        2. 4.7.4.2 Reserved RAM Memory-Maps
      5. 4.7.5  ROM Structure and Status Information
      6. 4.7.6  Boot Modes and Loaders
        1. 4.7.6.1 Boot Modes
          1. 4.7.6.1.1 Flash Boot
          2. 4.7.6.1.2 RAM Boot
          3. 4.7.6.1.3 Wait Boot
        2. 4.7.6.2 Bootloaders
          1. 4.7.6.2.1 SPI Boot Mode
          2. 4.7.6.2.2 I2C Boot Mode
          3. 4.7.6.2.3 Parallel Boot Mode
          4. 4.7.6.2.4 CAN Boot Mode
          5. 4.7.6.2.5 CAN-FD Boot Mode
          6. 4.7.6.2.6 UART Boot Mode
      7. 4.7.7  GPIO Assignments
      8. 4.7.8  HSM and C29 ROM Task Ownership and Interactions
        1. 4.7.8.1 Application Authentication by HSM
      9. 4.7.9  Boot Status Information
        1. 4.7.9.1 Booting Status
      10. 4.7.10 BootROM Timing
    8. 4.8 Software
      1. 4.8.1 BOOT Examples
  7. Lockstep Compare Module (LCM)
    1. 5.1 Introduction
      1. 5.1.1 Features
      2. 5.1.2 Block Diagram
      3. 5.1.3 Lockstep Compare Modules
    2. 5.2 Enabling LCM Comparators
    3. 5.3 LCM Redundant Module Configuration
    4. 5.4 LCM Error Handling
    5. 5.5 Debug Mode with LCM
    6. 5.6 Register Parity Error Protection
    7. 5.7 Functional Logic
      1. 5.7.1 Comparator Logic
      2. 5.7.2 Self-Test Logic
        1. 5.7.2.1 Match Test Mode
        2. 5.7.2.2 Mismatch Test Mode
      3. 5.7.3 Error Injection Tests
        1. 5.7.3.1 Comparator Error Force Test
        2. 5.7.3.2 Register Parity Error Test
    8. 5.8 Software
      1. 5.8.1 LCM Registers to Driverlib Functions
    9. 5.9 LCM Registers
      1. 5.9.1 LCM Base Address Table
      2. 5.9.2 LCM_REGS Registers
  8. Peripheral Interrupt Priority and Expansion (PIPE)
    1. 6.1 Introduction
      1. 6.1.1 Features
      2. 6.1.2 Interrupt Concepts
      3. 6.1.3 PIPE Related Collateral
    2. 6.2 Interrupt Architecture
      1. 6.2.1 Dynamic Priority Arbitration Block
      2. 6.2.2 Post Processing Block
      3. 6.2.3 Memory-Mapped Registers
    3. 6.3 Interrupt Propagation
    4. 6.4 Configuring Interrupts
      1. 6.4.1 Enabling and Disabling Interrupts
      2. 6.4.2 Prioritization
        1. 6.4.2.1 User-Configured Interrupt Priority
        2. 6.4.2.2 Index-Based Fixed Interrupt Priority
      3. 6.4.3 Nesting and Priority Grouping
      4. 6.4.4 Stack Protection
      5. 6.4.5 Context
    5. 6.5 Safety and Security
      1. 6.5.1 Access Control
      2. 6.5.2 PIPE Errors
      3. 6.5.3 Register Data Integrity and Safety
      4. 6.5.4 Self-Test and Diagnostics
    6. 6.6 Software
      1. 6.6.1 PIPE Registers to Driverlib Functions
      2. 6.6.2 INTERRUPT Examples
        1. 6.6.2.1 RTINT vs INT Latency example - SINGLE_CORE
        2. 6.6.2.2 INT and RTINT Nesting Example - SINGLE_CORE
    7. 6.7 PIPE Registers
      1. 6.7.1 PIPE Base Address Table
      2. 6.7.2 PIPE_REGS Registers
  9. Error Signaling Module (ESM_C29)
    1. 7.1 Introduction
      1. 7.1.1 Features
      2. 7.1.2 ESM Related Collateral
    2. 7.2 ESM Subsystem
      1. 7.2.1 System ESM
        1. 7.2.1.1 Error Pin Monitor Event
      2. 7.2.2 Safety Aggregator
        1. 7.2.2.1 EDC Controller Interface Description
          1. 7.2.2.1.1 EDC_REGS Registers
        2. 7.2.2.2 Read Operation on EDC Controller
        3. 7.2.2.3 Write Operation on EDC Controller
        4. 7.2.2.4 Safety Aggregator Error Injection
      3. 7.2.3 ESM Subsystem Integration View
    3. 7.3 ESM Functional Description
      1. 7.3.1 Error Event Inputs
      2. 7.3.2 Error Interrupt Outputs
        1. 7.3.2.1 High Priority Watchdog
        2. 7.3.2.2 Critical Priority Interrupt Output
      3. 7.3.3 Error Pin Output (ERR_O/ERRORSTS)
        1. 7.3.3.1 Minimum Time Interval
        2. 7.3.3.2 PWM Mode
      4. 7.3.4 Reset Type Information for ESM Registers
      5. 7.3.5 Clock Stop
      6. 7.3.6 Commit/Lock for MMRs
      7. 7.3.7 Safety Protection for MMRs
      8. 7.3.8 Register Configuration Tieoffs
        1. 7.3.8.1 Group0 High Priority Tieoff
        2. 7.3.8.2 High Priority Watchdog Enable Tieoff
    4. 7.4 ESM Configuration Guide
    5. 7.5 Interrupt Condition Control and Handling
      1. 7.5.1 ESM Low Priority Error Interrupt
      2. 7.5.2 ESM High Priority Error Interrupt
      3. 7.5.3 Critical Priority Error Interrupt
      4. 7.5.4 High Priority Watchdog Interrupt
      5. 7.5.5 Safety Aggregator Interrupt Control and Handling
    6. 7.6 Software
      1. 7.6.1 ESM_CPU Registers to Driverlib Functions
      2. 7.6.2 ESM_SYS Registers to Driverlib Functions
      3. 7.6.3 ESM_SAFETY_AGGREGATOR Registers to Driverlib Functions
      4. 7.6.4 ESM Examples
        1. 7.6.4.1 ESM Multicore Example (CPU1,CPU3) - MULTI_CORE
        2. 7.6.4.2 ESM Multicore Example (CPU1,CPU3) - MULTI_CORE
        3. 7.6.4.3 ESM - SINGLE_CORE
        4. 7.6.4.4 ESM - SINGLE_CORE
    7. 7.7 ESM Registers
      1. 7.7.1 ESM Base Address Table
      2. 7.7.2 ESM_CPU_REGS Registers
      3. 7.7.3 ESM_SYSTEM_REGS Registers
      4. 7.7.4 ESM_SAFETYAGG_REGS Registers
  10. Error Aggregator
    1. 8.1 Introduction
    2. 8.2 Error Aggregator Modules
    3. 8.3 Error Propagation Path from Source to CPU
    4. 8.4 Error Aggregator Interface
      1. 8.4.1 Functional Description
    5. 8.5 Error Condition Handling User Guide
    6. 8.6 Error Type Information
    7. 8.7 Error Sources Information
    8. 8.8 Software
      1. 8.8.1 ERROR_AGGREGATOR Registers to Driverlib Functions
    9. 8.9 ERRORAGGREGATOR Registers
      1. 8.9.1 ERRORAGGREGATOR Base Address Table
      2. 8.9.2 HSM_ERROR_AGGREGATOR_CONFIG_REGS Registers
      3. 8.9.3 ERROR_AGGREGATOR_CONFIG_REGS Registers
  11. Flash Module
    1. 9.1 Introduction to Flash Memory
      1. 9.1.1 FLASH Related Collateral
      2. 9.1.2 Features
      3. 9.1.3 Flash Tools
      4. 9.1.4 Block Diagram
    2. 9.2 Flash Subsystem Overview
    3. 9.3 Flash Banks and Pumps
    4. 9.4 Flash Read Interfaces
      1. 9.4.1 Bank Modes and Swapping
      2. 9.4.2 Flash Wait States
      3. 9.4.3 Buffer and Cache Mechanisms
        1. 9.4.3.1 Prefetch Mechanism and Block Cache
        2. 9.4.3.2 Data Line Buffer
        3. 9.4.3.3 Sequential Data Pre-read Mode
      4. 9.4.4 Flash Read Arbitration
      5. 9.4.5 Error Correction Code (ECC) Protection
      6. 9.4.6 Procedure to Change Flash Read Interface Registers
    5. 9.5 Flash Erase and Program
      1. 9.5.1 Flash Semaphore and Update Protection
      2. 9.5.2 Erase
      3. 9.5.3 Program
    6. 9.6 Migrating an Application from RAM to Flash
    7. 9.7 Flash Registers
      1. 9.7.1 FLASH Base Address Table
      2. 9.7.2 FLASH_CMD_REGS_FLC1 Registers
      3. 9.7.3 FLASH_CMD_REGS_FLC2 Registers
      4. 9.7.4 FRI_CTRL_REGS Registers
  12. 10Safety and Security Unit (SSU)
    1. 10.1  Introduction
      1. 10.1.1 SSU Related Collateral
      2. 10.1.2 Block Diagram
      3. 10.1.3 System SSU Configuration Example
    2. 10.2  Access Protection Ranges
      1. 10.2.1 Access Protection Inheritance
    3. 10.3  LINKs
    4. 10.4  STACKs
    5. 10.5  ZONEs
    6. 10.6  SSU-CPU Interface
      1. 10.6.1 SSU Operation in Lockstep Mode
    7. 10.7  SSU Operation Modes
    8. 10.8  Security Configuration and Flash Management
      1. 10.8.1 BANKMGMT Sectors
      2. 10.8.2 SECCFG Sectors
      3. 10.8.3 SECCFG Sector Address Mapping
      4. 10.8.4 SECCFG Sector Memory Map
      5. 10.8.5 SECCFG CRC
    9. 10.9  Flash Write/Erase Access Control
      1. 10.9.1 Permanent Flash Lock (Write/Erase Protection)
      2. 10.9.2 Updating Flash MAIN Sectors
      3. 10.9.3 Firmware-Over-The-Air Updates (FOTA)
      4. 10.9.4 Updating Flash SECCFG Sectors
      5. 10.9.5 Reading Flash SECCFG Sectors
    10. 10.10 RAMOPEN Feature
    11. 10.11 Debug Authorization
      1. 10.11.1 Global CPU Debug Enable
      2. 10.11.2 ZONE Debug
      3. 10.11.3 Authentication for Debug Access
        1. 10.11.3.1 Password-based Authentication
        2. 10.11.3.2 CPU-based Authentication
    12. 10.12 Hardcoded Protections
    13. 10.13 SSU Register Access Permissions
      1. 10.13.1 Permissions for SSU General Control Registers
      2. 10.13.2 Permissions for SSU CPU1 Configuration Registers
      3. 10.13.3 Permissions for SSU CPU2+ Configuration Registers
      4. 10.13.4 Permissions for CPU1 Access Protection Registers
      5. 10.13.5 Permissions for CPU2+ Access Protection Registers
    14. 10.14 SSU Fault Signals
    15. 10.15 Software
      1. 10.15.1 SSU Registers to Driverlib Functions
    16. 10.16 SSU Registers
      1. 10.16.1 SSU Base Address Table
      2. 10.16.2 SSU_GEN_REGS Registers
      3. 10.16.3 SSU_CPU1_CFG_REGS Registers
      4. 10.16.4 SSU_CPU2_CFG_REGS Registers
      5. 10.16.5 SSU_CPU3_CFG_REGS Registers
      6. 10.16.6 SSU_CPU1_AP_REGS Registers
      7. 10.16.7 SSU_CPU2_AP_REGS Registers
      8. 10.16.8 SSU_CPU3_AP_REGS Registers
  13. 11Configurable Logic Block (CLB)
    1. 11.1  Introduction
      1. 11.1.1 CLB Related Collateral
    2. 11.2  Description
      1. 11.2.1 CLB Clock
    3. 11.3  CLB Input/Output Connection
      1. 11.3.1 Overview
      2. 11.3.2 CLB Input Selection
      3. 11.3.3 CLB Output Selection
      4. 11.3.4 CLB Output Signal Multiplexer
    4. 11.4  CLB Tile
      1. 11.4.1 Static Switch Block
      2. 11.4.2 Counter Block
        1. 11.4.2.1 Counter Description
        2. 11.4.2.2 Counter Operation
        3. 11.4.2.3 Serializer Mode
        4. 11.4.2.4 Linear Feedback Shift Register (LFSR) Mode
      3. 11.4.3 FSM Block
      4. 11.4.4 LUT4 Block
      5. 11.4.5 Output LUT Block
      6. 11.4.6 Asynchronous Output Conditioning (AOC) Block
      7. 11.4.7 High Level Controller (HLC)
        1. 11.4.7.1 High Level Controller Events
        2. 11.4.7.2 High Level Controller Instructions
        3. 11.4.7.3 <Src> and <Dest>
        4. 11.4.7.4 Operation of the PUSH and PULL Instructions (Overflow and Underflow Detection)
    5. 11.5  CPU Interface
      1. 11.5.1 Register Description
      2. 11.5.2 Non-Memory Mapped Registers
    6. 11.6  RTDMA Access
    7. 11.7  CLB Data Export Through SPI RX Buffer
    8. 11.8  CLB Pipeline Mode
    9. 11.9  Software
      1. 11.9.1 CLB Registers to Driverlib Functions
      2. 11.9.2 CLB Examples
    10. 11.10 CLB Registers
      1. 11.10.1 CLB Base Address Table
      2. 11.10.2 CLB_LOGIC_CONFIG_REGS Registers
      3. 11.10.3 CLB_LOGIC_CONTROL_REGS Registers
      4. 11.10.4 CLB_DATA_EXCHANGE_REGS Registers
  14. 12Dual-Clock Comparator (DCC)
    1. 12.1 Introduction
      1. 12.1.1 Features
      2. 12.1.2 Block Diagram
    2. 12.2 Module Operation
      1. 12.2.1 Configuring DCC Counters
      2. 12.2.2 Single-Shot Measurement Mode
      3. 12.2.3 Continuous Monitoring Mode
      4. 12.2.4 Error Conditions
    3. 12.3 Interrupts
    4. 12.4 Software
      1. 12.4.1 DCC Registers to Driverlib Functions
      2. 12.4.2 DCC Examples
        1. 12.4.2.1 DCC Single shot Clock verification - SINGLE_CORE
        2. 12.4.2.2 DCC Single shot Clock measurement - SINGLE_CORE
        3. 12.4.2.3 DCC Continuous clock monitoring - SINGLE_CORE
    5. 12.5 DCC Registers
      1. 12.5.1 DCC Base Address Table
      2. 12.5.2 DCC_REGS Registers
  15. 13Real-Time Direct Memory Access (RTDMA)
    1. 13.1  Introduction
      1. 13.1.1 Features
      2. 13.1.2 RTDMA Related Collateral
      3. 13.1.3 Block Diagram
    2. 13.2  RTDMA Trigger Source Options
    3. 13.3  RTDMA Bus
    4. 13.4  Address Pointer and Transfer Control
    5. 13.5  Pipeline Timing and Throughput
    6. 13.6  Channel Priority
      1. 13.6.1 Round-Robin Mode
      2. 13.6.2 Software Configurable Priority of Channels
    7. 13.7  Overrun Detection Feature
    8. 13.8  Burst Mode
    9. 13.9  Safety and Security
      1. 13.9.1 Safety
        1. 13.9.1.1 Lockstep Mode
        2. 13.9.1.2 Memory Protection Unit (MPU)
          1. 13.9.1.2.1 MPU Errors
      2. 13.9.2 Security
      3. 13.9.3 RTDMA Errors
      4. 13.9.4 Self-Test and Diagnostics
    10. 13.10 Software
      1. 13.10.1 RTDMA Registers to Driverlib Functions
      2. 13.10.2 RTDMA Examples
        1. 13.10.2.1 RTDMA Academy Lab - SINGLE_CORE
        2. 13.10.2.2 RTDMA Transfer - SINGLE_CORE
        3. 13.10.2.3 RTDMA Transfer with MPU - SINGLE_CORE
    11. 13.11 RTDMA Registers
      1. 13.11.1 RTDMA Base Address Table
      2. 13.11.2 RTDMA_REGS Registers
      3. 13.11.3 RTDMA_DIAG_REGS Registers
      4. 13.11.4 RTDMA_SELFTEST_REGS Registers
      5. 13.11.5 RTDMA_MPU_REGS Registers
      6. 13.11.6 RTDMA_CH_REGS Registers
  16. 14External Memory Interface (EMIF)
    1. 14.1 Introduction
      1. 14.1.1 Purpose of the Peripheral
      2. 14.1.2 Features
        1. 14.1.2.1 Asynchronous Memory Support
        2. 14.1.2.2 Synchronous DRAM Memory Support
      3. 14.1.3 Functional Block Diagram
      4. 14.1.4 Configuring Device Pins
    2. 14.2 EMIF Module Architecture
      1. 14.2.1  EMIF Clock Control
      2. 14.2.2  EMIF Requests
      3. 14.2.3  EMIF Signal Descriptions
      4. 14.2.4  EMIF Signal Multiplexing Control
      5. 14.2.5  SDRAM Controller and Interface
        1. 14.2.5.1  SDRAM Commands
        2. 14.2.5.2  Interfacing to SDRAM
        3. 14.2.5.3  SDRAM Configuration Registers
        4. 14.2.5.4  SDRAM Auto-Initialization Sequence
        5. 14.2.5.5  SDRAM Configuration Procedure
        6. 14.2.5.6  EMIF Refresh Controller
          1. 14.2.5.6.1 Determining the Appropriate Value for the RR Field
        7. 14.2.5.7  Self-Refresh Mode
        8. 14.2.5.8  Power-Down Mode
        9. 14.2.5.9  SDRAM Read Operation
        10. 14.2.5.10 SDRAM Write Operations
        11. 14.2.5.11 Mapping from Logical Address to EMIF Pins
      6. 14.2.6  Asynchronous Controller and Interface
        1. 14.2.6.1 Interfacing to Asynchronous Memory
        2. 14.2.6.2 Accessing Larger Asynchronous Memories
        3. 14.2.6.3 Configuring EMIF for Asynchronous Accesses
        4. 14.2.6.4 Read and Write Operations in Normal Mode
          1. 14.2.6.4.1 Asynchronous Read Operations (Normal Mode)
          2. 14.2.6.4.2 Asynchronous Write Operations (Normal Mode)
        5. 14.2.6.5 Read and Write Operation in Select Strobe Mode
          1. 14.2.6.5.1 Asynchronous Read Operations (Select Strobe Mode)
          2. 14.2.6.5.2 Asynchronous Write Operations (Select Strobe Mode)
        6. 14.2.6.6 Extended Wait Mode and the EM1WAIT Pin
      7. 14.2.7  Data Bus Parking
      8. 14.2.8  Reset and Initialization Considerations
      9. 14.2.9  Interrupt Support
        1. 14.2.9.1 Interrupt Events
      10. 14.2.10 RTDMA Event Support
      11. 14.2.11 EMIF Signal Multiplexing
      12. 14.2.12 Memory Map
      13. 14.2.13 Priority and Arbitration
      14. 14.2.14 System Considerations
        1. 14.2.14.1 Asynchronous Request Times
      15. 14.2.15 Power Management
        1. 14.2.15.1 Power Management Using Self-Refresh Mode
        2. 14.2.15.2 Power Management Using Power Down Mode
      16. 14.2.16 Emulation Considerations
    3. 14.3 EMIF Subsystem (EMIFSS)
      1. 14.3.1 Burst Support
      2. 14.3.2 EMIFSS Performance Improvement
      3. 14.3.3 Buffer Module
        1. 14.3.3.1 CPU Write FIFO
      4. 14.3.4 Emulation Mode
    4. 14.4 Example Configuration
      1. 14.4.1 Hardware Interface
      2. 14.4.2 Software Configuration
        1. 14.4.2.1 Configuring the SDRAM Interface
          1. 14.4.2.1.1 PLL Programming for EMIF to K4S641632H-TC(L)70 Interface
          2. 14.4.2.1.2 SDRAM Timing Register (SDRAM_TR) Settings for EMIF to K4S641632H-TC(L)70 Interface
          3. 14.4.2.1.3 SDRAM Self Refresh Exit Timing Register (SDR_EXT_TMNG) Settings for EMIF to K4S641632H-TC(L)70 Interface
          4. 14.4.2.1.4 SDRAM Refresh Control Register (SDRAM_RCR) Settings for EMIF to K4S641632H-TC(L)70 Interface
          5. 14.4.2.1.5 SDRAM Configuration Register (SDRAM_CR) Settings for EMIF to K4S641632H-TC(L)70 Interface
        2. 14.4.2.2 Configuring the Flash Interface
          1. 14.4.2.2.1 Asynchronous 1 Configuration Register (ASYNC_CS2_CFG) Settings for EMIF to LH28F800BJE-PTTL90 Interface
    5. 14.5 Software
      1. 14.5.1 EMIF Registers to Driverlib Functions
      2. 14.5.2 EMIF Examples
    6. 14.6 EMIF Registers
      1. 14.6.1 EMIF Base Address Table
      2. 14.6.2 EMIF_REGS Registers
  17. 15General-Purpose Input/Output (GPIO)
    1. 15.1  Introduction
      1. 15.1.1 GPIO Related Collateral
    2. 15.2  Configuration Overview
    3. 15.3  Digital Inputs on ADC Pins (AIOs)
    4. 15.4  Digital Inputs and Outputs on ADC Pins (AGPIOs)
    5. 15.5  Digital General-Purpose I/O Control
    6. 15.6  Input Qualification
      1. 15.6.1 No Synchronization (Asynchronous Input)
      2. 15.6.2 Synchronization to SYSCLKOUT Only
      3. 15.6.3 Qualification Using a Sampling Window
    7. 15.7  PMBUS and I2C Signals
    8. 15.8  GPIO and Peripheral Muxing
      1. 15.8.1 GPIO Muxing
      2. 15.8.2 Peripheral Muxing
    9. 15.9  Internal Pullup Configuration Requirements
    10. 15.10 Software
      1. 15.10.1 GPIO Registers to Driverlib Functions
      2. 15.10.2 GPIO Examples
        1. 15.10.2.1 Device GPIO Toggle - SINGLE_CORE
        2. 15.10.2.2 XINT/XBAR example - SINGLE_CORE
      3. 15.10.3 LED Examples
        1. 15.10.3.1 LED Blinky Example - MULTI_CORE
        2. 15.10.3.2 LED Blinky Example (CPU1,CPU3) - MULTI_CORE
        3. 15.10.3.3 LED Blinky example - SINGLE_CORE
        4. 15.10.3.4 LED Blinky Example (CPU1|CPU2|CPU3) - MULTI_CORE
        5. 15.10.3.5 LED Blinky Example (CPU2) - MULTI_CORE
        6. 15.10.3.6 LED Blinky Example (CPU3) - MULTI_CORE
    11. 15.11 GPIO Registers
      1. 15.11.1 GPIO Base Address Table
      2. 15.11.2 GPIO_CTRL_REGS Registers
      3. 15.11.3 GPIO_DATA_REGS Registers
      4. 15.11.4 GPIO_DATA_READ_REGS Registers
  18. 16Interprocessor Communication (IPC)
    1. 16.1 Introduction
    2. 16.2 IPC Flags and Interrupts
    3. 16.3 IPC Command Registers
    4. 16.4 Free-Running Counter
    5. 16.5 IPC Communication Protocol
    6. 16.6 Software
      1. 16.6.1 IPC Registers to Driverlib Functions
      2. 16.6.2 IPC Examples
        1. 16.6.2.1 IPC basic message passing example with interrupt - MULTI_CORE
        2. 16.6.2.2 IPC basic message passing example with interrupt - MULTI_CORE
        3. 16.6.2.3 IPC basic message passing example with interrupt - MULTI_CORE
        4. 16.6.2.4 IPC basic message passing example with interrupt - MULTI_CORE
    7. 16.7 IPC Registers
      1. 16.7.1 IPC Base Address Table
      2. 16.7.2 IPC_COUNTER_REGS Registers
      3. 16.7.3 CPU1_IPC_SEND_REGS Registers
      4. 16.7.4 CPU2_IPC_SEND_REGS Registers
      5. 16.7.5 CPU3_IPC_SEND_REGS Registers
      6. 16.7.6 CPU1_IPC_RCV_REGS Registers
      7. 16.7.7 CPU2_IPC_RCV_REGS Registers
      8. 16.7.8 CPU3_IPC_RCV_REGS Registers
  19. 17Embedded Real-time Analysis and Diagnostic (ERAD)
    1. 17.1 Introduction
    2. 17.2 Enhanced Bus Comparator Unit
      1. 17.2.1 Enhanced Bus Comparator Unit Operations
      2. 17.2.2 Stack Qualification
      3. 17.2.3 Event Masking and Exporting
    3. 17.3 System Event Counter Unit
      1. 17.3.1 System Event Counter Modes
        1. 17.3.1.1 Counting Active Levels Versus Edges
        2. 17.3.1.2 Max and Min Mode
        3. 17.3.1.3 Cumulative Mode
        4. 17.3.1.4 Input Signal Selection
      2. 17.3.2 Reset on Event
      3. 17.3.3 Operation Conditions
    4. 17.4 Program Counter Trace
      1. 17.4.1 Functional Block Diagram
      2. 17.4.2 Trace Qualification Modes
        1. 17.4.2.1 Trace Input Signal Conditioning
      3. 17.4.3 Trace Memory
      4. 17.4.4 PC Trace Software Operation
      5. 17.4.5 Trace Operation in Debug Mode
    5. 17.5 ERAD Ownership, Initialization, and Reset
      1. 17.5.1 Feature Level Ownership
      2. 17.5.2 Feature Access Security Mechanism
      3. 17.5.3 PC Trace Access Security Mechanism
    6. 17.6 ERAD Programming Sequence
      1. 17.6.1 Hardware Breakpoint and Hardware Watch Point Programming Sequence
      2. 17.6.2 Timer and Counter Programming Sequence
    7. 17.7 Software
      1. 17.7.1 ERAD Registers to Driverlib Functions
    8. 17.8 ERAD Registers
      1. 17.8.1 ERAD Base Address Table
        1. 17.8.1.1 ERAD_REGS Registers
  20. 18Data Logger and Trace (DLT)
    1. 18.1 Introduction
      1. 18.1.1 Features
      2. 18.1.2 DLT Related Collateral
      3. 18.1.3 Interfaces
        1. 18.1.3.1 Block Diagram
    2. 18.2 Functional Overview
      1. 18.2.1 DLT Configuration
        1. 18.2.1.1 LINK Filter
        2. 18.2.1.2 TAG Filter
        3. 18.2.1.3 ERAD Event Trigger
        4. 18.2.1.4 Concurrent FILTERING modes
      2. 18.2.2 Time-stamping
      3. 18.2.3 FIFO Construction
        1. 18.2.3.1 FIFO Interrupt
    3. 18.3 Software
      1. 18.3.1 DLT Registers to Driverlib Functions
      2. 18.3.2 DLT Examples
        1. 18.3.2.1 DLT TAG filter example - SINGLE_CORE
        2. 18.3.2.2 DLT TAG filter example - SINGLE_CORE
        3. 18.3.2.3 DLT ERAD filter example - SINGLE_CORE
    4. 18.4 DLT Registers
      1. 18.4.1 DLT Base Address Table
      2. 18.4.2 DLT_CORE_REGS Registers
      3. 18.4.3 DLT_FIFO_REGS Registers
  21. 19Waveform Analyzer Diagnostic (WADI)
    1. 19.1 WADI Overview
      1. 19.1.1 Features
      2. 19.1.2 WADI Related Collateral
      3. 19.1.3 Block Diagram
      4. 19.1.4 Description
    2. 19.2 Signal and Trigger Input Configuration
      1. 19.2.1 SIG1 and SIG2 Configuration
      2. 19.2.2 Trigger 1 and Trigger 2
    3. 19.3 WADI Block
      1. 19.3.1 Overview
      2. 19.3.2 Counters
      3. 19.3.3 Pulse Width
        1. 19.3.3.1 Pulse Width Single Measurement
        2. 19.3.3.2 Pulse Width Aggregation
        3. 19.3.3.3 Pulse Width Average and Peak
      4. 19.3.4 Edge Count
        1. 19.3.4.1 Edge Count with Fixed Window
        2. 19.3.4.2 Edge Count with Moving Window
      5. 19.3.5 Signal1 to Signal2 Comparison
      6. 19.3.6 Dead Band and Phase
      7. 19.3.7 Simultaneous Measurement
    4. 19.4 Safe State Sequencer (SSS)
      1. 19.4.1 SSS Configuration
    5. 19.5 Lock and Commit Registers
    6. 19.6 Interrupt and Error Handling
    7. 19.7 RTDMA Interfaces
      1. 19.7.1 RTDMA Trigger
    8. 19.8 Software
      1. 19.8.1 WADI Registers to Driverlib Functions
      2. 19.8.2 WADI Examples
        1. 19.8.2.1 WADI Duty and Frequency check - SINGLE_CORE
    9. 19.9 WADI Registers
      1. 19.9.1 WADI Base Address Table
      2. 19.9.2 WADI_CONFIG_REGS Registers
      3. 19.9.3 WADI_OPER_SSS_REGS Registers
  22. 20Crossbar (X-BAR)
    1. 20.1 X-BAR Related Collateral
    2. 20.2 Input X-BAR, ICL XBAR, MINDB XBAR,
      1. 20.2.1 ICL and MINDB X-BAR
    3. 20.3 ePWM , CLB, and GPIO Output X-BAR
      1. 20.3.1 ePWM X-BAR
        1. 20.3.1.1 ePWM X-BAR Architecture
      2. 20.3.2 CLB X-BAR
        1. 20.3.2.1 CLB X-BAR Architecture
      3. 20.3.3 GPIO Output X-BAR
        1. 20.3.3.1 GPIO Output X-BAR Architecture
      4. 20.3.4 X-BAR Flags
    4. 20.4 Software
      1. 20.4.1 INPUT_XBAR Registers to Driverlib Functions
      2. 20.4.2 EPWM_XBAR Registers to Driverlib Functions
      3. 20.4.3 CLB_XBAR Registers to Driverlib Functions
      4. 20.4.4 OUTPUT_XBAR Registers to Driverlib Functions
      5. 20.4.5 MDL_XBAR Registers to Driverlib Functions
      6. 20.4.6 ICL_XBAR Registers to Driverlib Functions
      7. 20.4.7 XBAR Registers to Driverlib Functions
      8. 20.4.8 XBAR Examples
        1. 20.4.8.1 Input XBAR to Output XBAR Connection - SINGLE_CORE
        2. 20.4.8.2 Output XBAR Pulse Stretch - SINGLE_CORE
    5. 20.5 XBAR Registers
      1. 20.5.1 XBAR Base Address Table
      2. 20.5.2 INPUT_XBAR_REGS Registers
      3. 20.5.3 EPWM_XBAR_REGS Registers
      4. 20.5.4 CLB_XBAR_REGS Registers
      5. 20.5.5 OUTPUTXBAR_REGS Registers
      6. 20.5.6 MDL_XBAR_REGS Registers
      7. 20.5.7 ICL_XBAR_REGS Registers
      8. 20.5.8 OUTPUTXBAR_FLAG_REGS Registers
      9. 20.5.9 XBAR_REGS Registers
  23. 21Embedded Pattern Generator (EPG)
    1. 21.1 Introduction
      1. 21.1.1 Features
      2. 21.1.2 EPG Block Diagram
      3. 21.1.3 EPG Related Collateral
    2. 21.2 Clock Generator Modules
      1. 21.2.1 DCLK (50% duty cycle clock)
      2. 21.2.2 Clock Stop
    3. 21.3 Signal Generator Module
    4. 21.4 EPG Peripheral Signal Mux Selection
    5. 21.5 Application Software Notes
    6. 21.6 EPG Example Use Cases
      1. 21.6.1 EPG Example: Synchronous Clocks with Offset
        1. 21.6.1.1 Synchronous Clocks with Offset Register Configuration
      2. 21.6.2 EPG Example: Serial Data Bit Stream (LSB first)
        1. 21.6.2.1 Serial Data Bit Stream (LSB first) Register Configuration
      3. 21.6.3 EPG Example: Serial Data Bit Stream (MSB first)
        1. 21.6.3.1 Serial Data Bit Stream (MSB first) Register Configuration
      4. 21.6.4 EPG Example: Clock and Data Pair
        1. 21.6.4.1 Clock and Data Pair Register Configuration
      5. 21.6.5 EPG Example: Clock and Skewed Data Pair
        1. 21.6.5.1 Clock and Skewed Data Pair Register Configuration
      6. 21.6.6 EPG Example: Capturing Serial Data with a Known Baud Rate
        1. 21.6.6.1 Capturing Serial Data with a Known Baud Rate Register Configuration
    7. 21.7 EPG Interrupt
    8. 21.8 Software
      1. 21.8.1 EPG Registers to Driverlib Functions
      2. 21.8.2 EPG Examples
        1. 21.8.2.1 EPG Generating Synchronous Clocks - SINGLE_CORE
        2. 21.8.2.2 EPG Generating Two Offset Clocks - SINGLE_CORE
        3. 21.8.2.3 EPG Generating Two Offset Clocks With SIGGEN - SINGLE_CORE
        4. 21.8.2.4 EPG Generate Serial Data - SINGLE_CORE
        5. 21.8.2.5 EPG Generate Serial Data Shift Mode - SINGLE_CORE
    9. 21.9 EPG Registers
      1. 21.9.1 EPG Base Address Table
      2. 21.9.2 EPG_REGS Registers
      3. 21.9.3 EPG_MUX_REGS Registers
  24. 22► ANALOG PERIPHERALS
    1.     Technical Reference Manual Overview
  25. 23Analog Subsystem
    1. 23.1 Introduction
      1. 23.1.1 Features
      2. 23.1.2 Block Diagram
    2. 23.2 Optimizing Power-Up Time
    3. 23.3 Digital Inputs on ADC Pins (AIOs)
    4. 23.4 Digital Inputs and Outputs on ADC Pins (AGPIOs)
    5. 23.5 Analog Pins and Internal Connections
    6. 23.6 Software
      1. 23.6.1 ASYSCTL Registers to Driverlib Functions
    7. 23.7 Lock Registers
    8. 23.8 ASBSYS Registers
      1. 23.8.1 ASBSYS Base Address Table
      2. 23.8.2 ANALOG_SUBSYS_REGS Registers
  26. 24Analog-to-Digital Converter (ADC)
    1. 24.1  Introduction
      1. 24.1.1 ADC Related Collateral
      2. 24.1.2 Features
      3. 24.1.3 Block Diagram
    2. 24.2  ADC Configurability
      1. 24.2.1 Clock Configuration
      2. 24.2.2 Resolution
      3. 24.2.3 Voltage Reference
        1. 24.2.3.1 External Reference Mode
        2. 24.2.3.2 Internal Reference Mode
        3. 24.2.3.3 Ganged References
        4. 24.2.3.4 Selecting Reference Mode
      4. 24.2.4 Signal Mode
      5. 24.2.5 Expected Conversion Results
      6. 24.2.6 Interpreting Conversion Results
    3. 24.3  SOC Principle of Operation
      1. 24.3.1 SOC Configuration
      2. 24.3.2 Trigger Operation
        1. 24.3.2.1 Global Software Trigger
        2. 24.3.2.2 Trigger Repeaters
          1. 24.3.2.2.1 Oversampling Mode
          2. 24.3.2.2.2 Undersampling Mode
          3. 24.3.2.2.3 Trigger Phase Delay
          4. 24.3.2.2.4 Re-trigger Spread
          5. 24.3.2.2.5 Trigger Repeater Configuration
            1. 24.3.2.2.5.1 Register Shadow Updates
          6. 24.3.2.2.6 Re-Trigger Logic
          7. 24.3.2.2.7 Multi-Path Triggering Behavior
      3. 24.3.3 ADC Acquisition (Sample and Hold) Window
      4. 24.3.4 ADC Input Models
      5. 24.3.5 Channel Selection
        1. 24.3.5.1 External Channel Selection
          1. 24.3.5.1.1 External Channel Selection Timing
    4. 24.4  SOC Configuration Examples
      1. 24.4.1 Single Conversion from ePWM Trigger
      2. 24.4.2 Oversampled Conversion from ePWM Trigger
      3. 24.4.3 Multiple Conversions from CPU Timer Trigger
      4. 24.4.4 Software Triggering of SOCs
    5. 24.5  ADC Conversion Priority
    6. 24.6  Burst Mode
      1. 24.6.1 Burst Mode Example
      2. 24.6.2 Burst Mode Priority Example
    7. 24.7  EOC and Interrupt Operation
      1. 24.7.1 Interrupt Overflow
      2. 24.7.2 Continue to Interrupt Mode
      3. 24.7.3 Early Interrupt Configuration Mode
    8. 24.8  Post-Processing Blocks
      1. 24.8.1 PPB Offset Correction
      2. 24.8.2 PPB Error Calculation
      3. 24.8.3 PPB Result Delta Calculation
      4. 24.8.4 PPB Limit Detection and Zero-Crossing Detection
        1. 24.8.4.1 PPB Digital Trip Filter
      5. 24.8.5 PPB Sample Delay Capture
      6. 24.8.6 PPB Oversampling
        1. 24.8.6.1 Accumulation, Minimum, Maximum, and Average Functions
        2. 24.8.6.2 Outlier Rejection
    9. 24.9  Result Safety Checker
      1. 24.9.1 Result Safety Checker Operation
      2. 24.9.2 Result Safety Checker Interrupts and Events
    10. 24.10 Opens/Shorts Detection Circuit (OSDETECT)
      1. 24.10.1 Implementation
      2. 24.10.2 Detecting an Open Input Pin
      3. 24.10.3 Detecting a Shorted Input Pin
    11. 24.11 Power-Up Sequence
    12. 24.12 ADC Calibration
      1. 24.12.1 ADC Zero Offset Calibration
    13. 24.13 ADC Timings
      1. 24.13.1 ADC Timing Diagrams
      2. 24.13.2 Post-Processing Block Timings
    14. 24.14 Additional Information
      1. 24.14.1 Ensuring Synchronous Operation
        1. 24.14.1.1 Basic Synchronous Operation
        2. 24.14.1.2 Synchronous Operation with Multiple Trigger Sources
        3. 24.14.1.3 Synchronous Operation with Uneven SOC Numbers
        4. 24.14.1.4 Synchronous Operation with Different Resolutions
        5. 24.14.1.5 Non-overlapping Conversions
      2. 24.14.2 Choosing an Acquisition Window Duration
      3. 24.14.3 Achieving Simultaneous Sampling
      4. 24.14.4 Result Register Mapping
      5. 24.14.5 Internal Temperature Sensor
      6. 24.14.6 Designing an External Reference Circuit
      7. 24.14.7 Internal Test Mode
      8. 24.14.8 ADC Gain and Offset Calibration
    15. 24.15 Software
      1. 24.15.1 ADC Registers to Driverlib Functions
      2. 24.15.2 ADC Examples
        1. 24.15.2.1  ADC Software Triggering - SINGLE_CORE
        2. 24.15.2.2  ADC ePWM Triggering - SINGLE_CORE
        3. 24.15.2.3  ADC Temperature Sensor Conversion - SINGLE_CORE
        4. 24.15.2.4  ADC Synchronous SOC Software Force (adc_soc_software_sync) - SINGLE_CORE
        5. 24.15.2.5  ADC Continuous Triggering (adc_soc_continuous) - SINGLE_CORE
        6. 24.15.2.6  ADC Continuous Conversions Read by DMA (adc_soc_continuous_dma) - SINGLE_CORE
        7. 24.15.2.7  ADC PPB Offset (adc_ppb_offset) - SINGLE_CORE
        8. 24.15.2.8  ADC PPB Limits (adc_ppb_limits) - SINGLE_CORE
        9. 24.15.2.9  ADC PPB Delay Capture (adc_ppb_delay) - SINGLE_CORE
        10. 24.15.2.10 ADC ePWM Triggering Multiple SOC - SINGLE_CORE
        11. 24.15.2.11 ADC Burst Mode - SINGLE_CORE
        12. 24.15.2.12 ADC Burst Mode Oversampling - SINGLE_CORE
        13. 24.15.2.13 ADC SOC Oversampling - SINGLE_CORE
        14. 24.15.2.14 ADC PPB PWM trip (adc_ppb_pwm_trip) - SINGLE_CORE
        15. 24.15.2.15 ADC Trigger Repeater Oversampling - SINGLE_CORE
        16. 24.15.2.16 ADC Trigger Repeater Undersampling - SINGLE_CORE
        17. 24.15.2.17 ADC Safety Checker - SINGLE_CORE
    16. 24.16 ADC Registers
      1. 24.16.1 ADC Base Address Table
      2. 24.16.2 ADC_RESULT_REGS Registers
      3. 24.16.3 ADC_REGS Registers
      4. 24.16.4 ADC_SAFECHECK_REGS Registers
      5. 24.16.5 ADC_SAFECHECK_INTEVT_REGS Registers
      6. 24.16.6 ADC_GLOBAL_REGS Registers
  27. 25Buffered Digital-to-Analog Converter (DAC)
    1. 25.1 Introduction
      1. 25.1.1 DAC Related Collateral
      2. 25.1.2 Features
      3. 25.1.3 Block Diagram
    2. 25.2 Using the DAC
      1. 25.2.1 Initialization Sequence
      2. 25.2.2 DAC Offset Adjustment
      3. 25.2.3 EPWMSYNCPER Signal
    3. 25.3 Lock Registers
    4. 25.4 Software
      1. 25.4.1 DAC Registers to Driverlib Functions
      2. 25.4.2 DAC Examples
        1. 25.4.2.1 Buffered DAC Enable - SINGLE_CORE
        2. 25.4.2.2 Buffered DAC Random - SINGLE_CORE
    5. 25.5 DAC Registers
      1. 25.5.1 DAC Base Address Table
      2. 25.5.2 DAC_REGS Registers
  28. 26Comparator Subsystem (CMPSS)
    1. 26.1 Introduction
      1. 26.1.1 CMPSS Related Collateral
      2. 26.1.2 Features
      3. 26.1.3 Block Diagram
    2. 26.2 Comparator
    3. 26.3 Reference DAC
    4. 26.4 Ramp Generator
      1. 26.4.1 Ramp Generator Overview
      2. 26.4.2 Ramp Generator Behavior
      3. 26.4.3 Ramp Generator Behavior at Corner Cases
    5. 26.5 Digital Filter
      1. 26.5.1 Filter Initialization Sequence
    6. 26.6 Using the CMPSS
      1. 26.6.1 LATCHCLR, EPWMSYNCPER, and EPWMBLANK Signals
      2. 26.6.2 Synchronizer, Digital Filter, and Latch Delays
      3. 26.6.3 Calibrating the CMPSS
      4. 26.6.4 Enabling and Disabling the CMPSS Clock
    7. 26.7 Software
      1. 26.7.1 CMPSS Registers to Driverlib Functions
      2. 26.7.2 CMPSS Examples
        1. 26.7.2.1 CMPSS Asynchronous Trip - SINGLE_CORE
        2. 26.7.2.2 CMPSS Digital Filter Configuration - SINGLE_CORE
    8. 26.8 CMPSS Registers
      1. 26.8.1 CMPSS Base Address Table
      2. 26.8.2 CMPSS_REGS Registers
  29. 27► CONTROL PERIPHERALS
    1.     Technical Reference Manual Overview
  30. 28Enhanced Capture (eCAP)
    1. 28.1 Introduction
      1. 28.1.1 Features
      2. 28.1.2 ECAP Related Collateral
    2. 28.2 Description
    3. 28.3 Configuring Device Pins for the eCAP
    4. 28.4 Capture and APWM Operating Mode
    5. 28.5 Capture Mode Description
      1. 28.5.1  Event Prescaler
      2. 28.5.2  Glitch Filter
      3. 28.5.3  Edge Polarity Select and Qualifier
      4. 28.5.4  Continuous/One-Shot Control
      5. 28.5.5  32-Bit Counter and Phase Control
      6. 28.5.6  CAP1-CAP4 Registers
      7. 28.5.7  eCAP Synchronization
        1. 28.5.7.1 Example 1 - Using SWSYNC with ECAP Module
      8. 28.5.8  Interrupt Control
      9. 28.5.9  RTDMA Interrupt
      10. 28.5.10 ADC SOC Event
      11. 28.5.11 Shadow Load and Lockout Control
      12. 28.5.12 APWM Mode Operation
      13. 28.5.13 Signal Monitoring Unit
        1. 28.5.13.1 Pulse Width and Period Monitoring
        2. 28.5.13.2 Edge Monitoring
    6. 28.6 Application of the eCAP Module
      1. 28.6.1 Example 1 - Absolute Time-Stamp Operation Rising-Edge Trigger
      2. 28.6.2 Example 2 - Absolute Time-Stamp Operation Rising- and Falling-Edge Trigger
      3. 28.6.3 Example 3 - Time Difference (Delta) Operation Rising-Edge Trigger
      4. 28.6.4 Example 4 - Time Difference (Delta) Operation Rising- and Falling-Edge Trigger
    7. 28.7 Application of the APWM Mode
      1. 28.7.1 Example 1 - Simple PWM Generation (Independent Channels)
    8. 28.8 Software
      1. 28.8.1 ECAP Registers to Driverlib Functions
      2. 28.8.2 ECAP Examples
        1. 28.8.2.1 eCAP APWM Example - SINGLE_CORE
        2. 28.8.2.2 eCAP Capture PWM Example - SINGLE_CORE
        3. 28.8.2.3 eCAP APWM Phase-shift Example - SINGLE_CORE
    9. 28.9 ECAP Registers
      1. 28.9.1 ECAP Base Address Table
      2. 28.9.2 ECAP_REGS Registers
      3. 28.9.3 ECAP_SIGNAL_MONITORING Registers
      4. 28.9.4 HRCAP_REGS Registers
  31. 29High Resolution Capture (HRCAP)
    1. 29.1 Introduction
      1. 29.1.1 HRCAP Related Collateral
      2. 29.1.2 Features
      3. 29.1.3 Description
    2. 29.2 Operational Details
      1. 29.2.1 HRCAP Clocking
      2. 29.2.2 HRCAP Initialization Sequence
      3. 29.2.3 HRCAP Interrupts
      4. 29.2.4 HRCAP Calibration
        1. 29.2.4.1 Applying the Scale Factor
    3. 29.3 Known Exceptions
    4. 29.4 Software
      1. 29.4.1 HRCAP Examples
        1. 29.4.1.1 HRCAP Capture and Calibration Example - SINGLE_CORE
    5. 29.5 HRCAP Registers
      1. 29.5.1 HRCAP Base Address Table
      2. 29.5.2 HRCAP_REGS Registers
  32. 30Enhanced Pulse Width Modulator (ePWM)
    1. 30.1  Introduction
      1. 30.1.1 EPWM Related Collateral
      2. 30.1.2 Submodule Overview
    2. 30.2  Configuring Device Pins
    3. 30.3  ePWM Modules Overview
    4. 30.4  Time-Base (TB) Submodule
      1. 30.4.1 Purpose of the Time-Base Submodule
      2. 30.4.2 Controlling and Monitoring the Time-Base Submodule
      3. 30.4.3 Calculating PWM Period and Frequency
        1. 30.4.3.1 Time-Base Period Shadow Register
        2. 30.4.3.2 Time-Base Clock Synchronization
        3. 30.4.3.3 Time-Base Counter Synchronization
        4. 30.4.3.4 ePWM SYNC Selection
      4. 30.4.4 Phase Locking the Time-Base Clocks of Multiple ePWM Modules
      5. 30.4.5 Simultaneous Writes Between ePWM Register Instances
      6. 30.4.6 Time-Base Counter Modes and Timing Waveforms
      7. 30.4.7 Global Load
        1. 30.4.7.1 Global Load Pulse Pre-Scalar
        2. 30.4.7.2 One-Shot Load Mode
        3. 30.4.7.3 One-Shot Sync Mode
    5. 30.5  Counter-Compare (CC) Submodule
      1. 30.5.1 Purpose of the Counter-Compare Submodule
      2. 30.5.2 Controlling and Monitoring the Counter-Compare Submodule
      3. 30.5.3 Operational Highlights for the Counter-Compare Submodule
      4. 30.5.4 Count Mode Timing Waveforms
    6. 30.6  Action-Qualifier (AQ) Submodule
      1. 30.6.1 Purpose of the Action-Qualifier Submodule
      2. 30.6.2 Action-Qualifier Submodule Control and Status Register Definitions
      3. 30.6.3 Action-Qualifier Event Priority
      4. 30.6.4 AQCTLA and AQCTLB Shadow Mode Operations
      5. 30.6.5 Configuration Requirements for Common Waveforms
    7. 30.7  XCMP Complex Waveform Generator Mode
      1. 30.7.1 XCMP Allocation to CMPA and CMPB
      2. 30.7.2 XCMP Shadow Buffers
      3. 30.7.3 XCMP Operation
    8. 30.8  Dead-Band Generator (DB) Submodule
      1. 30.8.1 Purpose of the Dead-Band Submodule
      2. 30.8.2 Dead-band Submodule Additional Operating Modes
      3. 30.8.3 Operational Highlights for the Dead-Band Submodule
    9. 30.9  PWM Chopper (PC) Submodule
      1. 30.9.1 Purpose of the PWM Chopper Submodule
      2. 30.9.2 Operational Highlights for the PWM Chopper Submodule
      3. 30.9.3 Waveforms
        1. 30.9.3.1 One-Shot Pulse
        2. 30.9.3.2 Duty Cycle Control
    10. 30.10 Trip-Zone (TZ) Submodule
      1. 30.10.1 Purpose of the Trip-Zone Submodule
      2. 30.10.2 Operational Highlights for the Trip-Zone Submodule
        1. 30.10.2.1 Trip-Zone Configurations
      3. 30.10.3 Generating Trip Event Interrupts
    11. 30.11 Diode Emulation (DE) Submodule
      1. 30.11.1 DEACTIVE Mode
      2. 30.11.2 Exiting DE Mode
      3. 30.11.3 Re-Entering DE Mode
      4. 30.11.4 DE Monitor
    12. 30.12 Minimum Dead-Band (MINDB) + Illegal Combination Logic (ICL) Submodules
      1. 30.12.1 Minimum Dead-Band (MINDB)
      2. 30.12.2 Illegal Combo Logic (ICL)
    13. 30.13 Event-Trigger (ET) Submodule
      1. 30.13.1 Operational Overview of the ePWM Event-Trigger Submodule
    14. 30.14 Digital Compare (DC) Submodule
      1. 30.14.1 Purpose of the Digital Compare Submodule
      2. 30.14.2 Enhanced Trip Action Using CMPSS
      3. 30.14.3 Using CMPSS to Trip the ePWM on a Cycle-by-Cycle Basis
      4. 30.14.4 Operation Highlights of the Digital Compare Submodule
        1. 30.14.4.1 Digital Compare Events
        2. 30.14.4.2 Event Filtering
        3. 30.14.4.3 Valley Switching
        4. 30.14.4.4 Event Detection
          1. 30.14.4.4.1 Input Signal Detection
          2. 30.14.4.4.2 MIN and MAX Detection Circuit
    15. 30.15 ePWM Crossbar (X-BAR)
    16. 30.16 Applications to Power Topologies
      1. 30.16.1  Overview of Multiple Modules
      2. 30.16.2  Key Configuration Capabilities
      3. 30.16.3  Controlling Multiple Buck Converters With Independent Frequencies
      4. 30.16.4  Controlling Multiple Buck Converters With Same Frequencies
      5. 30.16.5  Controlling Multiple Half H-Bridge (HHB) Converters
      6. 30.16.6  Controlling Dual 3-Phase Inverters for Motors (ACI and PMSM)
      7. 30.16.7  Practical Applications Using Phase Control Between PWM Modules
      8. 30.16.8  Controlling a 3-Phase Interleaved DC/DC Converter
      9. 30.16.9  Controlling Zero Voltage Switched Full Bridge (ZVSFB) Converter
      10. 30.16.10 Controlling a Peak Current Mode Controlled Buck Module
      11. 30.16.11 Controlling H-Bridge LLC Resonant Converter
    17. 30.17 Register Lock Protection
    18. 30.18 High-Resolution Pulse Width Modulator (HRPWM)
      1. 30.18.1 Operational Description of HRPWM
        1. 30.18.1.1 Controlling the HRPWM Capabilities
        2. 30.18.1.2 HRPWM Source Clock
        3. 30.18.1.3 Configuring the HRPWM
        4. 30.18.1.4 Configuring High-Resolution in Deadband Rising-Edge and Falling-Edge Delay
        5. 30.18.1.5 Principle of Operation
          1. 30.18.1.5.1 Edge Positioning
          2. 30.18.1.5.2 Scaling Considerations
          3. 30.18.1.5.3 Duty Cycle Range Limitation
          4. 30.18.1.5.4 High-Resolution Period
            1. 30.18.1.5.4.1 High-Resolution Period Configuration
        6. 30.18.1.6 Deadband High-Resolution Operation
        7. 30.18.1.7 Scale Factor Optimizing Software (SFO)
        8. 30.18.1.8 HRPWM Examples Using Optimized Assembly Code
          1. 30.18.1.8.1 #Defines for HRPWM Header Files
          2. 30.18.1.8.2 Implementing a Simple Buck Converter
            1. 30.18.1.8.2.1 HRPWM Buck Converter Initialization Code
            2. 30.18.1.8.2.2 HRPWM Buck Converter Run-Time Code
          3. 30.18.1.8.3 Implementing a DAC Function Using an R+C Reconstruction Filter
            1. 30.18.1.8.3.1 PWM DAC Function Initialization Code
            2. 30.18.1.8.3.2 PWM DAC Function Run-Time Code
      2. 30.18.2 SFO Library Software - SFO_TI_Build_V8.lib
        1. 30.18.2.1 Scale Factor Optimizer Function - int SFO()
        2. 30.18.2.2 Software Usage
          1. 30.18.2.2.1 A Sample of How to Add "Include" Files
          2.        1131
          3. 30.18.2.2.2 Declaring an Element
          4.        1133
          5. 30.18.2.2.3 Initializing With a Scale Factor Value
          6.        1135
          7. 30.18.2.2.4 SFO Function Calls
    19. 30.19 Software
      1. 30.19.1 EPWM Registers to Driverlib Functions
      2. 30.19.2 HRPWMCAL Registers to Driverlib Functions
      3. 30.19.3 EPWM Examples
        1. 30.19.3.1  ePWM Trip Zone - SINGLE_CORE
        2. 30.19.3.2  ePWM Up Down Count Action Qualifier - SINGLE_CORE
        3. 30.19.3.3  ePWM Synchronization - SINGLE_CORE
        4. 30.19.3.4  ePWM Digital Compare - SINGLE_CORE
        5. 30.19.3.5  ePWM Digital Compare Event Filter Blanking Window - SINGLE_CORE
        6. 30.19.3.6  ePWM Valley Switching - SINGLE_CORE
        7. 30.19.3.7  ePWM Digital Compare Edge Filter - SINGLE_CORE
        8. 30.19.3.8  ePWM Deadband - SINGLE_CORE
        9. 30.19.3.9  ePWM DMA - SINGLE_CORE
        10. 30.19.3.10 ePWM Chopper - SINGLE_CORE
        11. 30.19.3.11 EPWM Configure Signal - SINGLE_CORE
        12. 30.19.3.12 Realization of Monoshot mode - SINGLE_CORE
        13. 30.19.3.13 EPWM Action Qualifier (epwm_up_aq) - SINGLE_CORE
        14. 30.19.3.14 ePWM XCMP Mode - SINGLE_CORE
        15. 30.19.3.15 ePWM Event Detection - SINGLE_CORE
    20. 30.20 EPWM Registers
      1. 30.20.1 EPWM Base Address Table
      2. 30.20.2 EPWM_REGS Registers
      3. 30.20.3 EPWM_XCMP_REGS Registers
      4. 30.20.4 DE_REGS Registers
      5. 30.20.5 MINDB_LUT_REGS Registers
      6. 30.20.6 HRPWMCAL_REGS Registers
  33. 31Enhanced Quadrature Encoder Pulse (eQEP)
    1. 31.1  Introduction
      1. 31.1.1 EQEP Related Collateral
    2. 31.2  Configuring Device Pins
    3. 31.3  Description
      1. 31.3.1 EQEP Inputs
      2. 31.3.2 Functional Description
      3. 31.3.3 eQEP Memory Map
    4. 31.4  Quadrature Decoder Unit (QDU)
      1. 31.4.1 Position Counter Input Modes
        1. 31.4.1.1 Quadrature Count Mode
        2. 31.4.1.2 Direction-Count Mode
        3. 31.4.1.3 Up-Count Mode
        4. 31.4.1.4 Down-Count Mode
      2. 31.4.2 eQEP Input Polarity Selection
      3. 31.4.3 Position-Compare Sync Output
    5. 31.5  Position Counter and Control Unit (PCCU)
      1. 31.5.1 Position Counter Operating Modes
        1. 31.5.1.1 Position Counter Reset on Index Event (QEPCTL[PCRM] = 00)
        2. 31.5.1.2 Position Counter Reset on Maximum Position (QEPCTL[PCRM] = 01)
        3. 31.5.1.3 Position Counter Reset on the First Index Event (QEPCTL[PCRM] = 10)
        4. 31.5.1.4 Position Counter Reset on Unit Time-out Event (QEPCTL[PCRM] = 11)
      2. 31.5.2 Position Counter Latch
        1. 31.5.2.1 Index Event Latch
        2. 31.5.2.2 Strobe Event Latch
      3. 31.5.3 Position Counter Initialization
      4. 31.5.4 eQEP Position-compare Unit
    6. 31.6  eQEP Edge Capture Unit
    7. 31.7  eQEP Watchdog
    8. 31.8  eQEP Unit Timer Base
    9. 31.9  QMA Module
      1. 31.9.1 Modes of Operation
        1. 31.9.1.1 QMA Mode-1 (QMACTRL[MODE] = 1)
        2. 31.9.1.2 QMA Mode-2 (QMACTRL[MODE] = 2)
      2. 31.9.2 Interrupt and Error Generation
    10. 31.10 eQEP Interrupt Structure
    11. 31.11 Software
      1. 31.11.1 EQEP Registers to Driverlib Functions
      2. 31.11.2 EQEP Examples
        1. 31.11.2.1 Frequency Measurement Using eQEP via unit timeout interrupt - SINGLE_CORE
        2. 31.11.2.2 Motor speed and direction measurement using eQEP via unit timeout interrupt - SINGLE_CORE
    12. 31.12 EQEP Registers
      1. 31.12.1 EQEP Base Address Table
      2. 31.12.2 EQEP_REGS Registers
  34. 32Sigma Delta Filter Module (SDFM)
    1. 32.1  Introduction
      1. 32.1.1 SDFM Related Collateral
      2. 32.1.2 Features
      3. 32.1.3 Block Diagram
    2. 32.2  Configuring Device Pins
    3. 32.3  Input Qualification
    4. 32.4  Input Control Unit
    5. 32.5  SDFM Clock Control
    6. 32.6  Sinc Filter
      1. 32.6.1 Data Rate and Latency of the Sinc Filter
    7. 32.7  Data (Primary) Filter Unit
      1. 32.7.1 32-bit or 16-bit Data Filter Output Representation
      2. 32.7.2 Data FIFO
      3. 32.7.3 SDSYNC Event
    8. 32.8  Comparator (Secondary) Filter Unit
      1. 32.8.1 Higher Threshold (HLT) Comparators
      2. 32.8.2 Lower Threshold (LLT) Comparators
      3. 32.8.3 Digital Filter
    9. 32.9  Theoretical SDFM Filter Output
    10. 32.10 Interrupt Unit
      1. 32.10.1 SDFM (SDyERR) Interrupt Sources
      2. 32.10.2 Data Ready (DRINT) Interrupt Sources
    11. 32.11 Software
      1. 32.11.1 SDFM Registers to Driverlib Functions
      2. 32.11.2 SDFM Examples
    12. 32.12 SDFM Registers
      1. 32.12.1 SDFM Base Address Table
      2. 32.12.2 SDFM_REGS Registers
  35. 33► COMMUNICATION PERIPHERALS
    1.     Technical Reference Manual Overview
  36. 34Modular Controller Area Network (MCAN)
    1. 34.1 MCAN Introduction
      1. 34.1.1 MCAN Related Collateral
      2. 34.1.2 MCAN Features
    2. 34.2 MCAN Environment
    3. 34.3 CAN Network Basics
    4. 34.4 MCAN Integration
    5. 34.5 MCAN Functional Description
      1. 34.5.1  Module Clocking Requirements
      2. 34.5.2  Interrupt Requests
      3. 34.5.3  Operating Modes
        1. 34.5.3.1 Software Initialization
        2. 34.5.3.2 Normal Operation
        3. 34.5.3.3 CAN FD Operation
      4. 34.5.4  Transmitter Delay Compensation
        1. 34.5.4.1 Description
        2. 34.5.4.2 Transmitter Delay Compensation Measurement
      5. 34.5.5  Restricted Operation Mode
      6. 34.5.6  Bus Monitoring Mode
      7. 34.5.7  Disabled Automatic Retransmission (DAR) Mode
        1. 34.5.7.1 Frame Transmission in DAR Mode
      8. 34.5.8  Clock Stop Mode
        1. 34.5.8.1 Suspend Mode
        2. 34.5.8.2 Wakeup Request
      9. 34.5.9  Test Modes
        1. 34.5.9.1 External Loop Back Mode
        2. 34.5.9.2 Internal Loop Back Mode
      10. 34.5.10 Timestamp Generation
        1. 34.5.10.1 External Timestamp Counter
      11. 34.5.11 Timeout Counter
      12. 34.5.12 Safety
        1. 34.5.12.1 ECC Wrapper
        2. 34.5.12.2 ECC Aggregator
          1. 34.5.12.2.1 ECC Aggregator Overview
          2. 34.5.12.2.2 ECC Aggregator Registers
        3. 34.5.12.3 Reads to ECC Control and Status Registers
        4. 34.5.12.4 ECC Interrupts
      13. 34.5.13 Rx Handling
        1. 34.5.13.1 Acceptance Filtering
          1. 34.5.13.1.1 Range Filter
          2. 34.5.13.1.2 Filter for Specific IDs
          3. 34.5.13.1.3 Classic Bit Mask Filter
          4. 34.5.13.1.4 Standard Message ID Filtering
          5. 34.5.13.1.5 Extended Message ID Filtering
        2. 34.5.13.2 Rx FIFOs
          1. 34.5.13.2.1 Rx FIFO Blocking Mode
          2. 34.5.13.2.2 Rx FIFO Overwrite Mode
        3. 34.5.13.3 Dedicated Rx Buffers
          1. 34.5.13.3.1 Rx Buffer Handling
      14. 34.5.14 Tx Handling
        1. 34.5.14.1 Transmit Pause
        2. 34.5.14.2 Dedicated Tx Buffers
        3. 34.5.14.3 Tx FIFO
        4. 34.5.14.4 Tx Queue
        5. 34.5.14.5 Mixed Dedicated Tx Buffers/Tx FIFO
        6. 34.5.14.6 Mixed Dedicated Tx Buffers/Tx Queue
        7. 34.5.14.7 Transmit Cancellation
        8. 34.5.14.8 Tx Event Handling
      15. 34.5.15 FIFO Acknowledge Handling
      16. 34.5.16 Message RAM
        1. 34.5.16.1 Message RAM Configuration
        2. 34.5.16.2 Rx Buffer and FIFO Element
        3. 34.5.16.3 Tx Buffer Element
        4. 34.5.16.4 Tx Event FIFO Element
        5. 34.5.16.5 Standard Message ID Filter Element
        6. 34.5.16.6 Extended Message ID Filter Element
    6. 34.6 Software
      1. 34.6.1 MCAN Examples
        1. 34.6.1.1 MCAN Loopback with Interrupts Example Using SYSCONFIG Tool - SINGLE_CORE
        2. 34.6.1.2 MCAN Loopback with Polling Example Using SYSCONFIG Tool - SINGLE_CORE
        3. 34.6.1.3 MCAN Loopback with Interrupts Example Using SYSCONFIG Tool - SINGLE_CORE
    7. 34.7 MCAN Registers
      1. 34.7.1 MCAN Base Address Table
      2. 34.7.2 MCANSS_REGS Registers
      3. 34.7.3 MCAN_REGS Registers
      4. 34.7.4 MCAN_ERROR_REGS Registers
  37. 35EtherCAT® SubordinateDevice Controller (ESC)
    1. 35.1 Introduction
      1. 35.1.1  EtherCAT Related Collateral
      2. 35.1.2  ESC Features
      3. 35.1.3  ESC Subsystem Integrated Features
      4. 35.1.4  ESC versus Beckhoff ET1100
      5. 35.1.5  EtherCAT IP Block Diagram
      6. 35.1.6  ESC Functional Blocks
        1. 35.1.6.1  Interface to EtherCAT MainDevice
        2. 35.1.6.2  Process Data Interface
        3. 35.1.6.3  General-Purpose Inputs and Outputs
        4. 35.1.6.4  EtherCAT Processing Unit (EPU)
        5. 35.1.6.5  Fieldbus Memory Management Unit (FMMU)
        6. 35.1.6.6  Sync Manager
        7. 35.1.6.7  Monitoring
        8. 35.1.6.8  Reset Controller
        9. 35.1.6.9  PHY Management
        10. 35.1.6.10 Distributed Clock (DC)
        11. 35.1.6.11 EEPROM
        12. 35.1.6.12 Status / LEDs
      7. 35.1.7  EtherCAT Physical Layer
        1. 35.1.7.1 MII Interface
        2. 35.1.7.2 PHY Management Interface
          1. 35.1.7.2.1 PHY Address Configuration
          2. 35.1.7.2.2 PHY Reset Signal
          3. 35.1.7.2.3 PHY Clock
      8. 35.1.8  EtherCAT Protocol
      9. 35.1.9  EtherCAT State Machine (ESM)
      10. 35.1.10 More Information on EtherCAT
      11. 35.1.11 Beckhoff® Automation EtherCAT IP Errata
    2. 35.2 ESC and ESCSS Description
      1. 35.2.1  ESC RAM Parity and Memory Address Maps
        1. 35.2.1.1 ESC RAM Parity Logic
        2. 35.2.1.2 CPU1 ESC Memory Address Map
        3. 35.2.1.3 CPU2 ESC Memory Address Map
      2. 35.2.2  Local Host Communication
        1. 35.2.2.1 Byte Accessibility Through PDI
        2. 35.2.2.2 Software Details for Operation Across Clock Domains
      3. 35.2.3  Debug Emulation Mode Operation
      4. 35.2.4  ESC SubSystem
        1. 35.2.4.1 CPU1 Bus Interface
        2. 35.2.4.2 CPU2/CPU3 Bus Interface
      5. 35.2.5  Interrupts and Interrupt Mapping
      6. 35.2.6  Power, Clocks, and Resets
        1. 35.2.6.1 Power
        2. 35.2.6.2 Clocking
        3. 35.2.6.3 Resets
          1. 35.2.6.3.1 Chip-Level Reset
          2. 35.2.6.3.2 EtherCAT Soft Resets
          3. 35.2.6.3.3 Reset Out (RESET_OUT)
      7. 35.2.7  LED Controls
      8. 35.2.8  SubordinateDevice Node Configuration and EEPROM
      9. 35.2.9  General-Purpose Inputs and Outputs
        1. 35.2.9.1 General-Purpose Inputs
        2. 35.2.9.2 General-Purpose Output
      10. 35.2.10 Distributed Clocks – Sync and Latch
        1. 35.2.10.1 Clock Synchronization
        2. 35.2.10.2 SYNC Signals
          1. 35.2.10.2.1 Seeking Host Intervention
        3. 35.2.10.3 LATCH Signals
          1. 35.2.10.3.1 Timestamping
        4. 35.2.10.4 Device Control and Synchronization
          1. 35.2.10.4.1 Synchronization of PWM
          2. 35.2.10.4.2 ECAP SYNC Inputs
          3. 35.2.10.4.3 SYNC Signal Conditioning and Rerouting
    3. 35.3 Software Initialization Sequence and Allocating Ownership
    4. 35.4 ESC Configuration Constants
    5. 35.5 Software
      1. 35.5.1 ECAT_SS Registers to Driverlib Functions
      2. 35.5.2 ETHERNET Examples
    6. 35.6 ETHERCAT Registers
      1. 35.6.1 ETHERCAT Base Address Table
      2. 35.6.2 ESCSS_REGS Registers
      3. 35.6.3 ESCSS_CONFIG_REGS Registers
  38. 36Fast Serial Interface (FSI)
    1. 36.1 Introduction
      1. 36.1.1 FSI Related Collateral
      2. 36.1.2 FSI Features
    2. 36.2 System-level Integration
      1. 36.2.1 CPU Interface
      2. 36.2.2 Signal Description
        1. 36.2.2.1 Configuring Device Pins
      3. 36.2.3 FSI Interrupts
        1. 36.2.3.1 Transmitter Interrupts
        2. 36.2.3.2 Receiver Interrupts
        3. 36.2.3.3 Configuring Interrupts
        4. 36.2.3.4 Handling Interrupts
      4. 36.2.4 RTDMA Interface
      5. 36.2.5 External Frame Trigger Mux
    3. 36.3 FSI Functional Description
      1. 36.3.1 Introduction to Operation
      2. 36.3.2 FSI Transmitter Module
        1. 36.3.2.1 Initialization
        2. 36.3.2.2 FSI_TX Clocking
        3. 36.3.2.3 Transmitting Frames
          1. 36.3.2.3.1 Software Triggered Frames
          2. 36.3.2.3.2 Externally Triggered Frames
          3. 36.3.2.3.3 Ping Frame Generation
            1. 36.3.2.3.3.1 Automatic Ping Frames
            2. 36.3.2.3.3.2 Software Triggered Ping Frame
            3. 36.3.2.3.3.3 Externally Triggered Ping Frame
          4. 36.3.2.3.4 Transmitting Frames with RTDMA
        4. 36.3.2.4 Transmit Buffer Management
        5. 36.3.2.5 CRC Submodule
        6. 36.3.2.6 Conditions in Which the Transmitter Must Undergo a Soft Reset
        7. 36.3.2.7 Reset
      3. 36.3.3 FSI Receiver Module
        1. 36.3.3.1  Initialization
        2. 36.3.3.2  FSI_RX Clocking
        3. 36.3.3.3  Receiving Frames
          1. 36.3.3.3.1 Receiving Frames with RTDMA
        4. 36.3.3.4  Ping Frame Watchdog
        5. 36.3.3.5  Frame Watchdog
        6. 36.3.3.6  Delay Line Control
        7. 36.3.3.7  Buffer Management
        8. 36.3.3.8  CRC Submodule
        9. 36.3.3.9  Using the Zero Bits of the Receiver Tag Registers
        10. 36.3.3.10 Conditions in Which the Receiver Must Undergo a Soft Reset
        11. 36.3.3.11 FSI_RX Reset
      4. 36.3.4 Frame Format
        1. 36.3.4.1 FSI Frame Phases
        2. 36.3.4.2 Frame Types
          1. 36.3.4.2.1 Ping Frames
          2. 36.3.4.2.2 Error Frames
          3. 36.3.4.2.3 Data Frames
        3. 36.3.4.3 Multi-Lane Transmission
      5. 36.3.5 Flush Sequence
      6. 36.3.6 Internal Loopback
      7. 36.3.7 CRC Generation
      8. 36.3.8 ECC Module
      9. 36.3.9 FSI-SPI Compatibility Mode
        1. 36.3.9.1 Available SPI Modes
          1. 36.3.9.1.1 FSITX as SPI Controller, Transmit Only
            1. 36.3.9.1.1.1 Initialization
            2. 36.3.9.1.1.2 Operation
          2. 36.3.9.1.2 FSIRX as SPI Peripheral, Receive Only
            1. 36.3.9.1.2.1 Initialization
            2. 36.3.9.1.2.2 Operation
          3. 36.3.9.1.3 FSITX and FSIRX Emulating a Full Duplex SPI Controller
            1. 36.3.9.1.3.1 Initialization
            2. 36.3.9.1.3.2 Operation
    4. 36.4 FSI Programing Guide
      1. 36.4.1 Establishing the Communication Link
        1. 36.4.1.1 Establishing the Communication Link from the Main Device
        2. 36.4.1.2 Establishing the Communication Link from the Remote Device
      2. 36.4.2 Register Protection
      3. 36.4.3 Emulation Mode
    5. 36.5 Software
      1. 36.5.1 FSI Registers to Driverlib Functions
      2. 36.5.2 FSI Examples
        1. 36.5.2.1 FSI Loopback:CPU Control - SINGLE_CORE
        2. 36.5.2.2 FSI data transfers upon CPU Timer event - SINGLE_CORE
    6. 36.6 FSI Registers
      1. 36.6.1 FSI Base Address Table
      2. 36.6.2 FSI_TX_REGS Registers
      3. 36.6.3 FSI_RX_REGS Registers
  39. 37Inter-Integrated Circuit Module (I2C)
    1. 37.1 Introduction
      1. 37.1.1 I2C Related Collateral
      2. 37.1.2 Features
      3. 37.1.3 Features Not Supported
      4. 37.1.4 Functional Overview
      5. 37.1.5 Clock Generation
      6. 37.1.6 I2C Clock Divider Registers (I2CCLKL and I2CCLKH)
        1. 37.1.6.1 Formula for the Controller Clock Period
    2. 37.2 Configuring Device Pins
    3. 37.3 I2C Module Operational Details
      1. 37.3.1  Input and Output Voltage Levels
      2. 37.3.2  Selecting Pullup Resistors
      3. 37.3.3  Data Validity
      4. 37.3.4  Operating Modes
      5. 37.3.5  I2C Module START and STOP Conditions
      6. 37.3.6  Non-repeat Mode versus Repeat Mode
      7. 37.3.7  Serial Data Formats
        1. 37.3.7.1 7-Bit Addressing Format
        2. 37.3.7.2 10-Bit Addressing Format
        3. 37.3.7.3 Free Data Format
        4. 37.3.7.4 Using a Repeated START Condition
      8. 37.3.8  Clock Synchronization
      9. 37.3.9  Clock Stretching
      10. 37.3.10 Arbitration
      11. 37.3.11 Digital Loopback Mode
      12. 37.3.12 NACK Bit Generation
    4. 37.4 Interrupt Requests Generated by the I2C Module
      1. 37.4.1 Basic I2C Interrupt Requests
      2. 37.4.2 I2C FIFO Interrupts
    5. 37.5 Resetting or Disabling the I2C Module
    6. 37.6 Software
      1. 37.6.1 I2C Registers to Driverlib Functions
      2. 37.6.2 I2C Examples
        1. 37.6.2.1 I2C Digital Loopback with FIFO Interrupts - SINGLE_CORE
        2. 37.6.2.2 I2C EEPROM - SINGLE_CORE
        3. 37.6.2.3 I2C Digital External Loopback with FIFO Interrupts - SINGLE_CORE
        4. 37.6.2.4 I2C Extended Clock Stretching Controller TX - SINGLE_CORE
        5. 37.6.2.5 I2C Extended Clock Stretching Target RX - SINGLE_CORE
    7. 37.7 I2C Registers
      1. 37.7.1 I2C Base Address Table
      2. 37.7.2 I2C_REGS Registers
  40. 38Power Management Bus Module (PMBus)
    1. 38.1 Introduction
      1. 38.1.1 PMBUS Related Collateral
      2. 38.1.2 Features
      3. 38.1.3 Block Diagram
    2. 38.2 Configuring Device Pins
    3. 38.3 Target Mode Operation
      1. 38.3.1 Configuration
      2. 38.3.2 Message Handling
        1. 38.3.2.1  Quick Command
        2. 38.3.2.2  Send Byte
        3. 38.3.2.3  Receive Byte
        4. 38.3.2.4  Write Byte and Write Word
        5. 38.3.2.5  Read Byte and Read Word
        6. 38.3.2.6  Process Call
        7. 38.3.2.7  Block Write
        8. 38.3.2.8  Block Read
        9. 38.3.2.9  Block Write-Block Read Process Call
        10. 38.3.2.10 Alert Response
        11. 38.3.2.11 Extended Command
        12. 38.3.2.12 Group Command
    4. 38.4 Controller Mode Operation
      1. 38.4.1 Configuration
      2. 38.4.2 Message Handling
        1. 38.4.2.1  Quick Command
        2. 38.4.2.2  Send Byte
        3. 38.4.2.3  Receive Byte
        4. 38.4.2.4  Write Byte and Write Word
        5. 38.4.2.5  Read Byte and Read Word
        6. 38.4.2.6  Process Call
        7. 38.4.2.7  Block Write
        8. 38.4.2.8  Block Read
        9. 38.4.2.9  Block Write-Block Read Process Call
        10. 38.4.2.10 Alert Response
        11. 38.4.2.11 Extended Command
        12. 38.4.2.12 Group Command
    5. 38.5 Software
      1. 38.5.1 PMBUS Registers to Driverlib Functions
    6. 38.6 PMBUS Registers
      1. 38.6.1 PMBUS Base Address Table
      2. 38.6.2 PMBUS_REGS Registers
  41. 39Universal Asynchronous Receiver/Transmitter (UART)
    1. 39.1 Introduction
      1. 39.1.1 Features
      2. 39.1.2 UART Related Collateral
      3. 39.1.3 Block Diagram
    2. 39.2 Functional Description
      1. 39.2.1 Transmit and Receive Logic
      2. 39.2.2 Baud-Rate Generation
      3. 39.2.3 Data Transmission
      4. 39.2.4 Serial IR (SIR)
      5. 39.2.5 9-Bit UART Mode
      6. 39.2.6 FIFO Operation
      7. 39.2.7 Interrupts
      8. 39.2.8 Loopback Operation
      9. 39.2.9 RTDMA Operation
        1. 39.2.9.1 Receiving Data Using UART with RTDMA
        2. 39.2.9.2 Transmitting Data Using UART with RTDMA
    3. 39.3 Initialization and Configuration
    4. 39.4 Software
      1. 39.4.1 UART Registers to Driverlib Functions
      2. 39.4.2 UART Examples
        1. 39.4.2.1 UART Loopback - SINGLE_CORE
        2. 39.4.2.2 UART Loopback with Interrupt - SINGLE_CORE
        3. 39.4.2.3 UART Loopback with DMA - SINGLE_CORE
        4. 39.4.2.4 UART Echoback - SINGLE_CORE
    5. 39.5 UART Registers
      1. 39.5.1 UART Base Address Table
      2. 39.5.2 UART_REGS Registers
      3. 39.5.3 UART_REGS_WRITE Registers
  42. 40Local Interconnect Network (LIN)
    1. 40.1 LIN Overview
      1. 40.1.1 LIN Mode Features
      2. 40.1.2 SCI Mode Features
      3. 40.1.3 Block Diagram
    2. 40.2 Serial Communications Interface Module
      1. 40.2.1 SCI Communication Formats
        1. 40.2.1.1 SCI Frame Formats
        2. 40.2.1.2 SCI Asynchronous Timing Mode
        3. 40.2.1.3 SCI Baud Rate
          1. 40.2.1.3.1 Superfractional Divider, SCI Asynchronous Mode
        4. 40.2.1.4 SCI Multiprocessor Communication Modes
          1. 40.2.1.4.1 Idle-Line Multiprocessor Modes
          2. 40.2.1.4.2 Address-Bit Multiprocessor Mode
        5. 40.2.1.5 SCI Multibuffered Mode
      2. 40.2.2 SCI Interrupts
        1. 40.2.2.1 Transmit Interrupt
        2. 40.2.2.2 Receive Interrupt
        3. 40.2.2.3 WakeUp Interrupt
        4. 40.2.2.4 Error Interrupts
      3. 40.2.3 SCI RTDMA Interface
        1. 40.2.3.1 Receive RTDMA Requests
        2. 40.2.3.2 Transmit RTDMA Requests
      4. 40.2.4 SCI Configurations
        1. 40.2.4.1 Receiving Data
          1. 40.2.4.1.1 Receiving Data in Single-Buffer Mode
          2. 40.2.4.1.2 Receiving Data in Multibuffer Mode
        2. 40.2.4.2 Transmitting Data
          1. 40.2.4.2.1 Transmitting Data in Single-Buffer Mode
          2. 40.2.4.2.2 Transmitting Data in Multibuffer Mode
      5. 40.2.5 SCI Low-Power Mode
        1. 40.2.5.1 Sleep Mode for Multiprocessor Communication
    3. 40.3 Local Interconnect Network Module
      1. 40.3.1 LIN Communication Formats
        1. 40.3.1.1  LIN Standards
        2. 40.3.1.2  Message Frame
          1. 40.3.1.2.1 Message Header
          2. 40.3.1.2.2 Response
        3. 40.3.1.3  Synchronizer
        4. 40.3.1.4  Baud Rate
          1. 40.3.1.4.1 Fractional Divider
          2. 40.3.1.4.2 Superfractional Divider
            1. 40.3.1.4.2.1 Superfractional Divider In LIN Mode
        5. 40.3.1.5  Header Generation
          1. 40.3.1.5.1 Event Triggered Frame Handling
          2. 40.3.1.5.2 Header Reception and Adaptive Baud Rate
        6. 40.3.1.6  Extended Frames Handling
        7. 40.3.1.7  Timeout Control
          1. 40.3.1.7.1 No-Response Error (NRE)
          2. 40.3.1.7.2 Bus Idle Detection
          3. 40.3.1.7.3 Timeout After Wakeup Signal and Timeout After Three Wakeup Signals
        8. 40.3.1.8  TXRX Error Detector (TED)
          1. 40.3.1.8.1 Bit Errors
          2. 40.3.1.8.2 Physical Bus Errors
          3. 40.3.1.8.3 ID Parity Errors
          4. 40.3.1.8.4 Checksum Errors
        9. 40.3.1.9  Message Filtering and Validation
        10. 40.3.1.10 Receive Buffers
        11. 40.3.1.11 Transmit Buffers
      2. 40.3.2 LIN Interrupts
      3. 40.3.3 Servicing LIN Interrupts
      4. 40.3.4 LIN RTDMA Interface
        1. 40.3.4.1 LIN Receive RTDMA Requests
        2. 40.3.4.2 LIN Transmit RTDMA Requests
      5. 40.3.5 LIN Configurations
        1. 40.3.5.1 Receiving Data
          1. 40.3.5.1.1 Receiving Data in Single-Buffer Mode
          2. 40.3.5.1.2 Receiving Data in Multibuffer Mode
        2. 40.3.5.2 Transmitting Data
          1. 40.3.5.2.1 Transmitting Data in Single-Buffer Mode
          2. 40.3.5.2.2 Transmitting Data in Multibuffer Mode
    4. 40.4 Low-Power Mode
      1. 40.4.1 Entering Sleep Mode
      2. 40.4.2 Wakeup
      3. 40.4.3 Wakeup Timeouts
    5. 40.5 Emulation Mode
    6. 40.6 Software
      1. 40.6.1 LIN Registers to Driverlib Functions
      2. 40.6.2 LIN Examples
        1. 40.6.2.1 LIN Internal Loopback with Interrupts - SINGLE_CORE
        2. 40.6.2.2 LIN SCI Mode Internal Loopback with Interrupts - SINGLE_CORE
        3. 40.6.2.3 LIN SCI MODE Internal Loopback with DMA - SINGLE_CORE
        4. 40.6.2.4 LIN Internal Loopback without interrupts (polled mode) - SINGLE_CORE
        5. 40.6.2.5 LIN SCI MODE (Single Buffer) Internal Loopback with DMA - SINGLE_CORE
    7. 40.7 LIN Registers
      1. 40.7.1 LIN Base Address Table
      2. 40.7.2 LIN_REGS Registers
  43. 41Serial Peripheral Interface (SPI)
    1. 41.1 Introduction
      1. 41.1.1 Features
      2. 41.1.2 Block Diagram
    2. 41.2 System-Level Integration
      1. 41.2.1 SPI Module Signals
      2. 41.2.2 Configuring Device Pins
        1. 41.2.2.1 GPIOs Required for High-Speed Mode
      3. 41.2.3 SPI Interrupts
      4. 41.2.4 RTDMA Support
    3. 41.3 SPI Operation
      1. 41.3.1  Introduction to Operation
      2. 41.3.2  Controller Mode
      3. 41.3.3  Peripheral Mode
      4. 41.3.4  Data Format
        1. 41.3.4.1 Transmission of Bit from SPIRXBUF
      5. 41.3.5  Baud Rate Selection
        1. 41.3.5.1 Baud Rate Determination
        2. 41.3.5.2 Baud Rate Calculation in Non-High Speed Mode (HS_MODE = 0)
        3. 41.3.5.3 Baud Rate Calculation
      6. 41.3.6  SPI Clocking Schemes
      7. 41.3.7  SPI FIFO Description
      8. 41.3.8  SPI RTDMA Transfers
        1. 41.3.8.1 Transmitting Data Using SPI with RTDMA
        2. 41.3.8.2 Receiving Data Using SPI with RTDMA
      9. 41.3.9  SPI High-Speed Mode
      10. 41.3.10 SPI 3-Wire Mode Description
    4. 41.4 Programming Procedure
      1. 41.4.1 Initialization Upon Reset
      2. 41.4.2 Configuring the SPI
      3. 41.4.3 Configuring the SPI for High-Speed Mode
      4. 41.4.4 Data Transfer Example
      5. 41.4.5 SPI 3-Wire Mode Code Examples
        1. 41.4.5.1 3-Wire Controller Mode Transmit
        2.       1703
          1. 41.4.5.2.1 3-Wire Controller Mode Receive
        3.       1705
          1. 41.4.5.2.1 3-Wire Peripheral Mode Transmit
        4.       1707
          1. 41.4.5.2.1 3-Wire Peripheral Mode Receive
      6. 41.4.6 SPI STEINV Bit in Digital Audio Transfers
    5. 41.5 Software
      1. 41.5.1 SPI Registers to Driverlib Functions
      2. 41.5.2 SPI Examples
        1. 41.5.2.1 SPI Digital Loopback - SINGLE_CORE
        2. 41.5.2.2 SPI Digital Loopback with FIFO Interrupts - SINGLE_CORE
        3. 41.5.2.3 SPI Digital External Loopback without FIFO Interrupts - SINGLE_CORE
        4. 41.5.2.4 SPI Digital External Loopback with FIFO Interrupts - SINGLE_CORE
        5. 41.5.2.5 SPI Digital Loopback with DMA - SINGLE_CORE
    6. 41.6 SPI Registers
      1. 41.6.1 SPI Base Address Table
      2. 41.6.2 SPI_REGS Registers
  44. 42Single Edge Nibble Transmission (SENT)
    1. 42.1 Introduction
      1. 42.1.1 Features
      2. 42.1.2 SENT Related Collateral
    2. 42.2 Advanced Topologies: MTPG
      1. 42.2.1 MTPG Features
      2. 42.2.2 MTPG Description
      3. 42.2.3 Channel Triggers
      4. 42.2.4 Timeout
    3. 42.3 Protocol Description
      1. 42.3.1 Nibble Frame Format
      2. 42.3.2 CRC
      3. 42.3.3 Short Serial Message Format
      4. 42.3.4 Enhanced Serial Message Format
      5. 42.3.5 Enhanced Serial Message Format CRC
      6. 42.3.6 Receive Modes
    4. 42.4 RTDMA Trigger
    5. 42.5 Interrupts Configuration
    6. 42.6 Glitch Filter
    7. 42.7 Software
      1. 42.7.1 SENT Registers to Driverlib Functions
      2. 42.7.2 SENT Examples
        1. 42.7.2.1 SENT Single Sensor - SINGLE_CORE
    8. 42.8 SENT Registers
      1. 42.8.1 SENT Base Address Table
      2. 42.8.2 SENT_CFG Registers
      3. 42.8.3 SENT_MEM Registers
      4. 42.8.4 SENT_MTPG Registers
  45. 43► SECURITY PERIPHERALS
    1.     Technical Reference Manual Overview
  46. 44Security Modules
    1. 44.1 Hardware Security Module (HSM)
      1. 44.1.1 HSM Related Collateral
    2. 44.2 Cryptographic Accelerators
  47. 45Revision History

EPWM_XCMP_REGS Registers

Table 30-119 lists the memory-mapped registers for the EPWM_XCMP_REGS registers. All register offset addresses not listed in Table 30-119 should be considered as reserved locations and the register contents should not be modified.

Table 30-119 EPWM_XCMP_REGS Registers
OffsetAcronymRegister NameProtection
0hXCMPCTL1XCMP Mode Control Register
10hXLOADCTLXCMP Mode Load Control Register
18hXLOADXCMP Mode Load Enable Register
1ChEPWMXLINKXLOADLink register across PWM modules
20hXREGSHDW1STSShadow Buffer 1 Update Status Register
28hXREGSHDW2STSShadow Buffer 2 Update Status Register
30hXREGSHDW3STSShadow Buffer 3 Update Status Register
200hXCMP1_ACTIVEAdditional Compare 1 Active Register
204hXCMP2_ACTIVEAdditional Compare 2 Active Register
208hXCMP3_ACTIVEAdditional Compare 3 Active Register
20ChXCMP4_ACTIVEAdditional Compare 4 Active Register
210hXCMP5_ACTIVEAdditional Compare 5 Active Register
214hXCMP6_ACTIVEAdditional Compare 6 Active Register
218hXCMP7_ACTIVEAdditional Compare 7 Active Register
21ChXCMP8_ACTIVEAdditional Compare 8 Active Register
220hXTBPRD_ACTIVEAdditional Time Base Period Active Register
230hXAQCTLA_ACTIVEAQCTLA Active Register
232hXAQCTLB_ACTIVEAQCTLB Active Register
244hXMINMAX_ACTIVEXMINMAX Active Register
280hXCMP1_SHDW1Additional Compare 1 Shadow 1 Register
284hXCMP2_SHDW1Additional Compare 2 Shadow 1 Register
288hXCMP3_SHDW1Additional Compare 3 Shadow 1 Register
28ChXCMP4_SHDW1Additional Compare 4 Shadow 1 Register
290hXCMP5_SHDW1Additional Compare 5 Shadow 1 Register
294hXCMP6_SHDW1Additional Compare 6 Shadow 1 Register
298hXCMP7_SHDW1Additional Compare 7 Shadow 1 Register
29ChXCMP8_SHDW1Additional Compare 8 Shadow 1 Register
2A0hXTBPRD_SHDW1Additional Time Base Period Shadow 1 Register
2B0hXAQCTLA_SHDW1XAQCTLA Shadow 1 Register
2B2hXAQCTLB_SHDW1XAQCTLB Shadow 1 Register
2BAhCMPC_SHDW1CMPC Shadow 1 Register
2BEhCMPD_SHDW1CMPD Shadow 1 Register
2C4hXMINMAX_SHDW1XMINMAX Shadow 1 Register
300hXCMP1_SHDW2Additional Compare 1 Shadow 2 Register
304hXCMP2_SHDW2Additional Compare 2 Shadow 2 Register
308hXCMP3_SHDW2Additional Compare 3 Shadow 2 Register
30ChXCMP4_SHDW2Additional Compare 4 Shadow 2 Register
310hXCMP5_SHDW2Additional Compare 5 Shadow 2 Register
314hXCMP6_SHDW2Additional Compare 6 Shadow 2 Register
318hXCMP7_SHDW2Additional Compare 7 Shadow 2 Register
31ChXCMP8_SHDW2Additional Compare 8 Shadow 2 Register
320hXTBPRD_SHDW2Additional Time Base Period Shadow 2 Register
330hXAQCTLA_SHDW2XAQCTLA Shadow 2 Register
332hXAQCTLB_SHDW2XAQCTLB Shadow 2 Register
33AhCMPC_SHDW2CMPC Shadow 2 Register
33EhCMPD_SHDW2CMPD Shadow 2 Register
344hXMINMAX_SHDW2XMINMAX Shadow 2 Register
380hXCMP1_SHDW3Additional Compare 1 Shadow 3 Register
384hXCMP2_SHDW3Additional Compare 2 Shadow 3 Register
388hXCMP3_SHDW3Additional Compare 3 Shadow 3 Register
38ChXCMP4_SHDW3Additional Compare 4 Shadow 3 Register
390hXCMP5_SHDW3Additional Compare 5 Shadow 3 Register
394hXCMP6_SHDW3Additional Compare 6 Shadow 3 Register
398hXCMP7_SHDW3Additional Compare 7 Shadow 3 Register
39ChXCMP8_SHDW3Additional Compare 8 Shadow 3 Register
3A0hXTBPRD_SHDW3Additional Time Base Period Shadow 3 Register
3B0hXAQCTLA_SHDW3XAQCTLA Shadow 3 Register
3B2hXAQCTLB_SHDW3XAQCTLB Shadow 3 Register
3BAhCMPC_SHDW3CMPC Shadow 3 Register
3BEhCMPD_SHDW3CMPD Shadow 3 Register
3C4hXMINMAX_SHDW3XMINMAX Shadow 3 Register

Complex bit access types are encoded to fit into small table cells. Table 30-120 shows the codes that are used for access types in this section.

Table 30-120 EPWM_XCMP_REGS Access Type Codes
Access TypeCodeDescription
Read Type
RRRead
R-0R
-0
Read
Returns 0s
Write Type
WWWrite
W1SW
1S
Write
1 to set
Reset or Default Value
-nValue after reset or the default value
Register Array Variables
i,j,k,l,m,nWhen these variables are used in a register name, an offset, or an address, they refer to the value of a register array where the register is part of a group of repeating registers. The register groups form a hierarchical structure and the array is represented with a formula.
yWhen this variable is used in a register name, an offset, or an address it refers to the value of a register array.

30.20.3.1 XCMPCTL1 Register (Offset = 0h) [Reset = 00000000h]

XCMPCTL1 is shown in Figure 30-214 and described in Table 30-121.

Return to the Summary Table.

XCMP Mode Control Register

Figure 30-214 XCMPCTL1 Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVEDXCMPB_ALLOC
R-0-0hR/W-0h
76543210
XCMPA_ALLOCRESERVEDXCMPSPLITXCMPEN
R/W-0hR-0-0hR/W-0hR/W-0h
Table 30-121 XCMPCTL1 Register Field Descriptions
BitFieldTypeResetDescription
31-12RESERVEDR-00hReserved
11-8XCMPB_ALLOCR/W0hXCMPn register allocation for CMPB:
0 : Reserved
1: Reserved
2 : Reserved
3: Reserved
4: Reserved
5: XCMP5
6: XCMP5, XCMP6
7: XCMP5, XCMP6, XCMP7
8: XCMP5, XCMP6, XCMP7, XCMP8
This register settings will take effect only when XCMPEN==1
And XCMPSPLIT ==1

Reset type: SYSRSn

7-4XCMPA_ALLOCR/W0hXCMPn register allocation for CMPA:
0: No XCMP
1: XCMP1
2: XCMP1, XCMP2
3: XCMP1, XCMP2, XCMP3
4: XCMP1, XCMP2, XCMP3, XCMP4
5: XCMP1, XCMP2, XCMP3, XCMP4, XCMP5
6: XCMP1, XCMP2, XCMP3, XCMP4, XCMP5, XCMP6
7: XCMP1, XCMP2, XCMP3, XCMP4, XCMP5, XCMP6, XCMP7
8: XCMP1, XCMP2, XCMP3, XCMP4, XCMP5, XCMP6, XCMP7, XCMP8
This register settings will take effect only when XCMPEN==1
If XCMPSPLIT ==1, this field cannot be greater than 4. If XCMPSPLIT ==1 only lower 3 bits are used in this field.

Reset type: SYSRSn

3-2RESERVEDR-00hReserved
1XCMPSPLITR/W0hXCMP Register Allocation Options:
0 : XCMP1-8 --> CMPA
1 : XCMP1-4 -->CMPA, XCMP5-8 --> CMPB
This register settings will take effect only when XCMPEN==1

Reset type: SYSRSn

0XCMPENR/W0hXCMP Compare Register Operation Enable:
0: XCMP register operation Disabled (Operation compatible to Type-4)
1: XCMP register operation Enabled (New CMPx registers are effective)

Reset type: SYSRSn

30.20.3.2 XLOADCTL Register (Offset = 10h) [Reset = 00000000h]

XLOADCTL is shown in Figure 30-215 and described in Table 30-122.

Return to the Summary Table.

XCMP Mode Load Control Register

Figure 30-215 XLOADCTL Register
3130292827262524
RESERVEDRPTBUF3CNTRESERVEDRPTBUF3PRD
R-0-0hR-0hR-0-0hR/W-0h
2322212019181716
RESERVEDRPTBUF2CNTRESERVEDRPTBUF2PRD
R-0-0hR-0hR-0-0hR/W-0h
15141312111098
RESERVEDSHDWBUFPTR_LOADMULTIPLESHDWBUFPTR_LOADONCE
R-0-0hR-0hR/W-0h
76543210
RESERVEDSHDWLEVELRESERVEDLOADMODERESERVED
R-0-0hR/W-0hR-0-0hR/W-0hR-0-0h
Table 30-122 XLOADCTL Register Field Descriptions
BitFieldTypeResetDescription
31RESERVEDR-00hReserved
30-28RPTBUF3CNTR0hRepeat Count Status Shadow Buffer 3: These bits indicate how many times shadow buffer 3 has been be applied before moving to the next buffer I,e, shadow buffer 1.
000: Shadow buffer reset value with STARTLD and copied to Active register
001: Shadow buffer applied twice on 2 successive load strobes
010: Shadow buffer applied thrice on 3 successive load strobes
.
.

111: Shadow buffer applied 8 times on 8 successive load strobes

These bits reset to zero every time STARTLD is initiated.

Reset type: SYSRSn

27RESERVEDR-00hReserved
26-24RPTBUF3PRDR/W0hRepeat Count Shadow Buffer 3 : These bits indicate how many times shadow buffer 3 will be applied before moving to the next buffer I,e, shadow buffer 1.
000: Apply shadow buffer once and move to the next shadow buffer on the following load pulse
001: Apply shadow buffer twice on 2 successive load strobes and move to the next shadow buffer on the following load pulse
010: Apply shadow buffer thrice on 3 successive load strobes and move to the next shadow buffer on the following load pulse
.
.

111: Apply shadow buffer 8 times on 8 successive load strobes and move to the next shadow buffer on the following load pulse

Reset type: SYSRSn

23RESERVEDR-00hReserved
22-20RPTBUF2CNTR0hRepeat Count Status Shadow Buffer 2: These bits indicate how many times shadow buffer 2 has been be applied before moving to the next buffer I,e, shadow buffer 1.
000: Shadow buffer reset value with STARTLD and copied to Active register
001: Shadow buffer applied twice on 2 successive load strobes
010: Shadow buffer applied thrice on 3 successive load strobes
.
.

111: Shadow buffer applied 8 times on 8 successive load strobes

These bits reset to zero every time STARTLD is initiated.

Reset type: SYSRSn

19RESERVEDR-00hReserved
18-16RPTBUF2PRDR/W0hRepeat Count Shadow Buffer 2 : These bits indicate how many times shadow buffer 2 will be applied before moving to the next buffer I,e, shadow buffer 1.
000: Apply shadow buffer once and move to the next shadow buffer on the following load pulse
001: Apply shadow buffer twice on 2 successive load strobes and move to the next shadow buffer on the following load pulse
010: Apply shadow buffer thrice on 3 successive load strobes and move to the next shadow buffer on the following load pulse
.
.

111: Apply shadow buffer 8 times on 8 successive load strobes and move to the next shadow buffer on the following load pulse

Reset type: SYSRSn

15-12RESERVEDR-00hReserved
11-10SHDWBUFPTR_LOADMULTIPLER0hRegister Load event count: These bits indicate the current shadow buffer in use.
00: Reset value
01: Shadow buffer 1 in use
10: Shadow buffer 2 in use
11: Shadow buffer 3 in use

Reset type: SYSRSn

9-8SHDWBUFPTR_LOADONCER/W0hRegister Load event count: These bits indicate the current shadow buffer in use.
00: Reset value
01: Shadow buffer 1 in use
10: 2 Shadow buffer 2 in use
11: 3 Shadow buffer 3 in use

Reset type: SYSRSn

7-6RESERVEDR-00hReserved
5-4SHDWLEVELR/W0hShadow Register Level Allocation Options: These bits are effective only when XCMPEN is enabled.
00 : Shadow level is set at zero. Active register is available
01 : Shadow level is set at 1. SHDW1 and Active registers are available
10 : Shadow level is set at 1. SHDW1, SHDW2 and Active registers are available
11 : Shadow level is set at 1. SHDW1, SHDW2, SHDW3 and Active registers are available

Reset type: SYSRSn

3RESERVEDR-00hReserved
2LOADMODER/W0hLoad mode selection for Shadow registers: These bits are effective only when XCMPEN is enabled.
0 : (LOADONCE) Load occurs at every load strobe (CNT_Zero or FRCLD) from SHDWn Active registers. And STARTLD is cleared after 1 load strobe. SHDWBUFPTR is not automatically decremented in this case. SHDWBUFPTR needs to be set for subsequent loads.

1 : (LOADMULTIPLE) Load occurs at every load strobe (CNT_Zero or FRCLD) from SHDWn Active registers. And STARTLD is cleared after SHDWLEVEL number of load strobes. SHDWBUFPTR decrements by 1 on a load strobe, until the SHDWBUFPTR reaches 1.

Reset type: SYSRSn

1-0RESERVEDR-00hReserved

30.20.3.3 XLOAD Register (Offset = 18h) [Reset = 00000000h]

XLOAD is shown in Figure 30-216 and described in Table 30-123.

Return to the Summary Table.

XCMP Mode Load Enable Register

Figure 30-216 XLOAD Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDFRCLDSTARTLD
R-0-0hR-0/W1S-0hR-0/W1S-0h
Table 30-123 XLOAD Register Field Descriptions
BitFieldTypeResetDescription
31-2RESERVEDR-00hReserved
1FRCLDR-0/W1S0hForce reload event in one shot mode :
1: Writing a 1 to this bit turn force one load event at the input of the event pre-scale counter as shown in the diagram below. This bit is intended to be used for testing and/or software force loading of the events in global load mode.
0: Writing of 0 will be ignored.
Always reads back a 0.

Reset type: SYSRSn

0STARTLDR-0/W1S0hEnable reload event :
1: Writing a 1 to this bit turn the one shot latch condition ON. Upon occurrence of a chosen load strobe, one shadow to active reload occurs and the latch will be cleared. Hence writing '1' to this bit would allow load strobe event to pass through and block further strobe events.
0: Writing of 0 will be ignored.
Always reads back a 0.

Reset type: SYSRSn

30.20.3.4 EPWMXLINKXLOAD Register (Offset = 1Ch) [Reset = 000000XXh]

EPWMXLINKXLOAD is shown in Figure 30-217 and described in Table 30-124.

Return to the Summary Table.

Link register across PWM modules

Figure 30-217 EPWMXLINKXLOAD Register
31302928272625242322212019181716
RESERVED
R-0-0h
1514131211109876543210
RESERVEDXLOADLINK
R-0-0hR/W-Xh
Table 30-124 EPWMXLINKXLOAD Register Field Descriptions
BitFieldTypeResetDescription
31-5RESERVEDR-00hReserved

30.20.3.5 XREGSHDW1STS Register (Offset = 20h) [Reset = 00000000h]

XREGSHDW1STS is shown in Figure 30-218 and described in Table 30-125.

Return to the Summary Table.

Shadow Buffer 1 Update Status Register

Figure 30-218 XREGSHDW1STS Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVEDXMIN_SHDW1FULLXMAX_SHDW1FULLXAQCTLB_SHDW1FULLXAQCTLA_SHDW1FULLCMPD_SHDW1FULLCMPC_SHDW1FULLXTBPRD_SHDW1FULL
R-0-0hR-0hR-0hR-0hR-0hR-0hR-0hR-0h
76543210
XCMP8_SHDW1FULLXCMP7_SHDW1FULLXCMP6_SHDW1FULLXCMP5_SHDW1FULLXCMP4_SHDW1FULLXCMP3_SHDW1FULLXCMP2_SHDW1FULLXCMP1_SHDW1FULL
R-0hR-0hR-0hR-0hR-0hR-0hR-0hR-0h
Table 30-125 XREGSHDW1STS Register Field Descriptions
BitFieldTypeResetDescription
31-15RESERVEDR-00hReserved
14XMIN_SHDW1FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

13XMAX_SHDW1FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

12XAQCTLB_SHDW1FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

11XAQCTLA_SHDW1FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

10CMPD_SHDW1FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

9CMPC_SHDW1FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

8XTBPRD_SHDW1FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

7XCMP8_SHDW1FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

6XCMP7_SHDW1FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

5XCMP6_SHDW1FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

4XCMP5_SHDW1FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

3XCMP4_SHDW1FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

2XCMP3_SHDW1FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

1XCMP2_SHDW1FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

0XCMP1_SHDW1FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

30.20.3.6 XREGSHDW2STS Register (Offset = 28h) [Reset = 00000000h]

XREGSHDW2STS is shown in Figure 30-219 and described in Table 30-126.

Return to the Summary Table.

Shadow Buffer 2 Update Status Register

Figure 30-219 XREGSHDW2STS Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVEDXMIN_SHDW2FULLXMAX_SHDW2FULLXAQCTLB_SHDW2FULLXAQCTLA_SHDW2FULLCMPD_SHDW2FULLCMPC_SHDW2FULLXTBPRD_SHDW2FULL
R-0-0hR-0hR-0hR-0hR-0hR-0hR-0hR-0h
76543210
XCMP8_SHDW2FULLXCMP7_SHDW2FULLXCMP6_SHDW2FULLXCMP5_SHDW2FULLXCMP4_SHDW2FULLXCMP3_SHDW2FULLXCMP2_SHDW2FULLXCMP1_SHDW2FULL
R-0hR-0hR-0hR-0hR-0hR-0hR-0hR-0h
Table 30-126 XREGSHDW2STS Register Field Descriptions
BitFieldTypeResetDescription
31-15RESERVEDR-00hReserved
14XMIN_SHDW2FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

13XMAX_SHDW2FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

12XAQCTLB_SHDW2FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

11XAQCTLA_SHDW2FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

10CMPD_SHDW2FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

9CMPC_SHDW2FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

8XTBPRD_SHDW2FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

7XCMP8_SHDW2FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

6XCMP7_SHDW2FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

5XCMP6_SHDW2FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

4XCMP5_SHDW2FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

3XCMP4_SHDW2FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

2XCMP3_SHDW2FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

1XCMP2_SHDW2FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

0XCMP1_SHDW2FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

30.20.3.7 XREGSHDW3STS Register (Offset = 30h) [Reset = 00000000h]

XREGSHDW3STS is shown in Figure 30-220 and described in Table 30-127.

Return to the Summary Table.

Shadow Buffer 3 Update Status Register

Figure 30-220 XREGSHDW3STS Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVEDXMIN_SHDW3FULLXMAX_SHDW3FULLXAQCTLB_SHDW3FULLXAQCTLA_SHDW3FULLCMPD_SHDW3FULLCMPC_SHDW3FULLXTBPRD_SHDW3FULL
R-0-0hR-0hR-0hR-0hR-0hR-0hR-0hR-0h
76543210
XCMP8_SHDW3FULLXCMP7_SHDW3FULLXCMP6_SHDW3FULLXCMP5_SHDW3FULLXCMP4_SHDW3FULLXCMP3_SHDW3FULLXCMP2_SHDW3FULLXCMP1_SHDW3FULL
R-0hR-0hR-0hR-0hR-0hR-0hR-0hR-0h
Table 30-127 XREGSHDW3STS Register Field Descriptions
BitFieldTypeResetDescription
31-15RESERVEDR-00hReserved
14XMIN_SHDW3FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

13XMAX_SHDW3FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

12XAQCTLB_SHDW3FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

11XAQCTLA_SHDW3FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

10CMPD_SHDW3FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

9CMPC_SHDW3FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

8XTBPRD_SHDW3FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

7XCMP8_SHDW3FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

6XCMP7_SHDW3FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

5XCMP6_SHDW3FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

4XCMP5_SHDW3FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

3XCMP4_SHDW3FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

2XCMP3_SHDW3FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

1XCMP2_SHDW3FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

0XCMP1_SHDW3FULLR0h0 Shadow Register is not full yet
1 Indicates the Shadow Register is full, a CPU write will over-write current Shadow value

Reset type: SYSRSn

30.20.3.8 XCMP1_ACTIVE Register (Offset = 200h) [Reset = 00000000h]

XCMP1_ACTIVE is shown in Figure 30-221 and described in Table 30-128.

Return to the Summary Table.

Additional Compare 1 Active Register

Figure 30-221 XCMP1_ACTIVE Register
313029282726252423222120191817161514131211109876543210
XCMP1_ACTIVEXCMP1HR_ACTIVE
R/W-0hR/W-0h
Table 30-128 XCMP1_ACTIVE Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP1_ACTIVER/W0hXCMP1_ACTIVE Register
The value in the XCMP1_ACTIVE register is loaded into CMPA/B (shadow/active) registers when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP1HR_ACTIVER/W0hXCMP1HR_ACTIVE Register
The value in the XCMP1HR_ACTIVE register is loaded into CMPA/BHR (shadow/active) registers when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.9 XCMP2_ACTIVE Register (Offset = 204h) [Reset = 00000000h]

XCMP2_ACTIVE is shown in Figure 30-222 and described in Table 30-129.

Return to the Summary Table.

Additional Compare 2 Active Register

Figure 30-222 XCMP2_ACTIVE Register
313029282726252423222120191817161514131211109876543210
XCMP2_ACTIVEXCMP2HR_ACTIVE
R/W-0hR/W-0h
Table 30-129 XCMP2_ACTIVE Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP2_ACTIVER/W0hXCMP2_ACTIVE Register
The value in the XCMP2_ACTIVE register is loaded into CMPA/B (shadow/active) registers when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP2HR_ACTIVER/W0hXCMP2HR_ACTIVE Register
The value in the XCMP2HR_ACTIVE register is loaded into CMPA/BHR (shadow/active) registers when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.10 XCMP3_ACTIVE Register (Offset = 208h) [Reset = 00000000h]

XCMP3_ACTIVE is shown in Figure 30-223 and described in Table 30-130.

Return to the Summary Table.

Additional Compare 3 Active Register

Figure 30-223 XCMP3_ACTIVE Register
313029282726252423222120191817161514131211109876543210
XCMP3_ACTIVEXCMP3HR_ACTIVE
R/W-0hR/W-0h
Table 30-130 XCMP3_ACTIVE Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP3_ACTIVER/W0hXCMP3_ACTIVE Register
The value in the XCMP3_ACTIVE register is loaded into CMPA/B (shadow/active) registers when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP3HR_ACTIVER/W0hXCMP3HR_ACTIVE Register
The value in the XCMP3HR_ACTIVE register is loaded into CMPA/BHR (shadow/active) registers when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.11 XCMP4_ACTIVE Register (Offset = 20Ch) [Reset = 00000000h]

XCMP4_ACTIVE is shown in Figure 30-224 and described in Table 30-131.

Return to the Summary Table.

Additional Compare 4 Active Register

Figure 30-224 XCMP4_ACTIVE Register
313029282726252423222120191817161514131211109876543210
XCMP4_ACTIVEXCMP4HR_ACTIVE
R/W-0hR/W-0h
Table 30-131 XCMP4_ACTIVE Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP4_ACTIVER/W0hXCMP4_ACTIVE Register
The value in the XCMP4_ACTIVE register is loaded into CMPA/B (shadow/active) registers when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP4HR_ACTIVER/W0hXCMP4HR_ACTIVE Register
The value in the XCMP4HR_ACTIVE register is loaded into CMPA/BHR (shadow/active) registers when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.12 XCMP5_ACTIVE Register (Offset = 210h) [Reset = 00000000h]

XCMP5_ACTIVE is shown in Figure 30-225 and described in Table 30-132.

Return to the Summary Table.

Additional Compare 5 Active Register

Figure 30-225 XCMP5_ACTIVE Register
313029282726252423222120191817161514131211109876543210
XCMP5_ACTIVEXCMP5HR_ACTIVE
R/W-0hR/W-0h
Table 30-132 XCMP5_ACTIVE Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP5_ACTIVER/W0hXCMP5_ACTIVE Register
The value in the XCMP5_ACTIVE register is loaded into CMPA/B (shadow/active) registers when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP5HR_ACTIVER/W0hXCMP5HR_ACTIVE Register
The value in the XCMP5HR_ACTIVE register is loaded into CMPA/BHR (shadow/active) registers when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.13 XCMP6_ACTIVE Register (Offset = 214h) [Reset = 00000000h]

XCMP6_ACTIVE is shown in Figure 30-226 and described in Table 30-133.

Return to the Summary Table.

Additional Compare 6 Active Register

Figure 30-226 XCMP6_ACTIVE Register
313029282726252423222120191817161514131211109876543210
XCMP6_ACTIVEXCMP6HR_ACTIVE
R/W-0hR/W-0h
Table 30-133 XCMP6_ACTIVE Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP6_ACTIVER/W0hXCMP6_ACTIVE Register
The value in the XCMP6_ACTIVE register is loaded into CMPA/B (shadow/active) registers when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP6HR_ACTIVER/W0hXCMP6HR_ACTIVE Register
The value in the XCMP6HR_ACTIVE register is loaded into CMPA/BHR (shadow/active) registers when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.14 XCMP7_ACTIVE Register (Offset = 218h) [Reset = 00000000h]

XCMP7_ACTIVE is shown in Figure 30-227 and described in Table 30-134.

Return to the Summary Table.

Additional Compare 7 Active Register

Figure 30-227 XCMP7_ACTIVE Register
313029282726252423222120191817161514131211109876543210
XCMP7_ACTIVEXCMP7HR_ACTIVE
R/W-0hR/W-0h
Table 30-134 XCMP7_ACTIVE Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP7_ACTIVER/W0hXCMP7_ACTIVE Register
The value in the XCMP7_ACTIVE register is loaded into CMPA/B (shadow/active) registers when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP7HR_ACTIVER/W0hXCMP7HR_ACTIVE Register
The value in the XCMP7HR_ACTIVE register is loaded into CMPA/BHR (shadow/active) registers when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.15 XCMP8_ACTIVE Register (Offset = 21Ch) [Reset = 00000000h]

XCMP8_ACTIVE is shown in Figure 30-228 and described in Table 30-135.

Return to the Summary Table.

Additional Compare 8 Active Register

Figure 30-228 XCMP8_ACTIVE Register
313029282726252423222120191817161514131211109876543210
XCMP8_ACTIVEXCMP8HR_ACTIVE
R/W-0hR/W-0h
Table 30-135 XCMP8_ACTIVE Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP8_ACTIVER/W0hXCMP8_ACTIVE Register
The value in the XCMP8_ACTIVE register is loaded into CMPA/B (shadow/active) registers when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP8HR_ACTIVER/W0hXCMP8HR_ACTIVE Register
The value in the XCMP8HR_ACTIVE register is loaded into CMPA/BHR (shadow/active) registers when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.16 XTBPRD_ACTIVE Register (Offset = 220h) [Reset = 00000000h]

XTBPRD_ACTIVE is shown in Figure 30-229 and described in Table 30-136.

Return to the Summary Table.

Additional Time Base Period Active Register

Figure 30-229 XTBPRD_ACTIVE Register
313029282726252423222120191817161514131211109876543210
XTBPRD_ACTIVEXTBPRDHR_ACTIVE
R/W-0hR/W-0h
Table 30-136 XTBPRD_ACTIVE Register Field Descriptions
BitFieldTypeResetDescription
31-16XTBPRD_ACTIVER/W0hThe value in the XTBPRD_ACTIVE register is loaded into TBPRD (shadow/active) registers when shadow to active load occurs.

Reset type: SYSRSn

15-0XTBPRDHR_ACTIVER/W0hThe value in the XTBPRDHR_ACTIVE register is loaded into TBPRDHR (shadow/active) registers when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.17 XAQCTLA_ACTIVE Register (Offset = 230h) [Reset = 0000h]

XAQCTLA_ACTIVE is shown in Figure 30-230 and described in Table 30-137.

Return to the Summary Table.

AQCTLA Active Register

Figure 30-230 XAQCTLA_ACTIVE Register
15141312111098
XCMP8XCMP7XCMP6XCMP5
R/W-0hR/W-0hR/W-0hR/W-0h
76543210
XCMP4XCMP3XCMP2XCMP1
R/W-0hR/W-0hR/W-0hR/W-0h
Table 30-137 XAQCTLA_ACTIVE Register Field Descriptions
BitFieldTypeResetDescription
15-14XCMP8R/W0hAction when Counter = CMP8
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

13-12XCMP7R/W0hAction when Counter = CMP7
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

11-10XCMP6R/W0hAction when Counter = CMP6
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

9-8XCMP5R/W0hAction when Counter = CMP5
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

7-6XCMP4R/W0hAction when Counter = CMP4
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

5-4XCMP3R/W0hAction when Counter = CMP3
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

3-2XCMP2R/W0hAction when Counter = CMP2
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

1-0XCMP1R/W0hAction when Counter = CMP1
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

30.20.3.18 XAQCTLB_ACTIVE Register (Offset = 232h) [Reset = 0000h]

XAQCTLB_ACTIVE is shown in Figure 30-231 and described in Table 30-138.

Return to the Summary Table.

AQCTLB Active Register

Figure 30-231 XAQCTLB_ACTIVE Register
15141312111098
XCMP8XCMP7XCMP6XCMP5
R/W-0hR/W-0hR/W-0hR/W-0h
76543210
RESERVED
R-0-0h
Table 30-138 XAQCTLB_ACTIVE Register Field Descriptions
BitFieldTypeResetDescription
15-14XCMP8R/W0hAction when Counter = CMP8
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

13-12XCMP7R/W0hAction when Counter = CMP7
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

11-10XCMP6R/W0hAction when Counter = CMP6
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

9-8XCMP5R/W0hAction when Counter = CMP5
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

7-0RESERVEDR-00hReserved

30.20.3.19 XMINMAX_ACTIVE Register (Offset = 244h) [Reset = 00000000h]

XMINMAX_ACTIVE is shown in Figure 30-232 and described in Table 30-139.

Return to the Summary Table.

XMINMAX Active Register

Figure 30-232 XMINMAX_ACTIVE Register
313029282726252423222120191817161514131211109876543210
XMIN_ACTIVEXMAX_ACTIVE
R/W-0hR/W-0h
Table 30-139 XMINMAX_ACTIVE Register Field Descriptions
BitFieldTypeResetDescription
31-16XMIN_ACTIVER/W0hThe value in the XMIN_ACTIVE register is used for comparision against the threshold of the capture counter at any given time.

Reset type: SYSRSn

15-0XMAX_ACTIVER/W0hThe value in the XMAX_ACTIVE register is used for comparision against the threshold of the capture counter at any given time.

Reset type: SYSRSn

30.20.3.20 XCMP1_SHDW1 Register (Offset = 280h) [Reset = 00000000h]

XCMP1_SHDW1 is shown in Figure 30-233 and described in Table 30-140.

Return to the Summary Table.

Additional Compare 1 Shadow 1 Register

Figure 30-233 XCMP1_SHDW1 Register
313029282726252423222120191817161514131211109876543210
XCMP1_SHDW1XCMP1HR_SHDW1
R/W-0hR/W-0h
Table 30-140 XCMP1_SHDW1 Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP1_SHDW1R/W0hXCMP1_SHDW1 Register
The value in the XCMP1_SHDW1 register is loaded into XCMP1_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP1HR_SHDW1R/W0hXCMP1HR_SHDW1 Register
The value in the XCMP1HR_SHDW1 register is loaded into XCMP1HR_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.21 XCMP2_SHDW1 Register (Offset = 284h) [Reset = 00000000h]

XCMP2_SHDW1 is shown in Figure 30-234 and described in Table 30-141.

Return to the Summary Table.

Additional Compare 2 Shadow 1 Register

Figure 30-234 XCMP2_SHDW1 Register
313029282726252423222120191817161514131211109876543210
XCMP2_SHDW1XCMP2HR_SHDW1
R/W-0hR/W-0h
Table 30-141 XCMP2_SHDW1 Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP2_SHDW1R/W0hXCMP2_SHDW1 Register
The value in the XCMP2_SHDW1 register is loaded into XCMP2_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP2HR_SHDW1R/W0hXCMP2HR_SHDW1 Register
The value in the XCMP2HR_SHDW1 register is loaded into XCMP2HR_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.22 XCMP3_SHDW1 Register (Offset = 288h) [Reset = 00000000h]

XCMP3_SHDW1 is shown in Figure 30-235 and described in Table 30-142.

Return to the Summary Table.

Additional Compare 3 Shadow 1 Register

Figure 30-235 XCMP3_SHDW1 Register
313029282726252423222120191817161514131211109876543210
XCMP3_SHDW1XCMP3HR_SHDW1
R/W-0hR/W-0h
Table 30-142 XCMP3_SHDW1 Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP3_SHDW1R/W0hXCMP3_SHDW1 Register
The value in the XCMP3_SHDW1 register is loaded into XCMP3_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP3HR_SHDW1R/W0hXCMP3HR_SHDW1 Register
The value in the XCMP3HR_SHDW1 register is loaded into XCMP3HR_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.23 XCMP4_SHDW1 Register (Offset = 28Ch) [Reset = 00000000h]

XCMP4_SHDW1 is shown in Figure 30-236 and described in Table 30-143.

Return to the Summary Table.

Additional Compare 4 Shadow 1 Register

Figure 30-236 XCMP4_SHDW1 Register
313029282726252423222120191817161514131211109876543210
XCMP4_SHDW1XCMP4HR_SHDW1
R/W-0hR/W-0h
Table 30-143 XCMP4_SHDW1 Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP4_SHDW1R/W0hXCMP4_SHDW1 Register
The value in the XCMP4_SHDW1 register is loaded into XCMP4_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP4HR_SHDW1R/W0hXCMP4HR_SHDW1 Register
The value in the XCMP4HR_SHDW1 register is loaded into XCMP4HR_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.24 XCMP5_SHDW1 Register (Offset = 290h) [Reset = 00000000h]

XCMP5_SHDW1 is shown in Figure 30-237 and described in Table 30-144.

Return to the Summary Table.

Additional Compare 5 Shadow 1 Register

Figure 30-237 XCMP5_SHDW1 Register
313029282726252423222120191817161514131211109876543210
XCMP5_SHDW1XCMP5HR_SHDW1
R/W-0hR/W-0h
Table 30-144 XCMP5_SHDW1 Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP5_SHDW1R/W0hXCMP5_SHDW1 Register
The value in the XCMP5_SHDW1 register is loaded into XCMP5_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP5HR_SHDW1R/W0hXCMP5HR_SHDW1 Register
The value in the XCMP5HR_SHDW1 register is loaded into XCMP5HR_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.25 XCMP6_SHDW1 Register (Offset = 294h) [Reset = 00000000h]

XCMP6_SHDW1 is shown in Figure 30-238 and described in Table 30-145.

Return to the Summary Table.

Additional Compare 6 Shadow 1 Register

Figure 30-238 XCMP6_SHDW1 Register
313029282726252423222120191817161514131211109876543210
XCMP6_SHDW1XCMP6HR_SHDW1
R/W-0hR/W-0h
Table 30-145 XCMP6_SHDW1 Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP6_SHDW1R/W0hXCMP6_SHDW1 Register
The value in the XCMP6_SHDW1 register is loaded into XCMP6_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP6HR_SHDW1R/W0hXCMP6HR_SHDW1 Register
The value in the XCMP6HR_SHDW1 register is loaded into XCMP6HR_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.26 XCMP7_SHDW1 Register (Offset = 298h) [Reset = 00000000h]

XCMP7_SHDW1 is shown in Figure 30-239 and described in Table 30-146.

Return to the Summary Table.

Additional Compare 7 Shadow 1 Register

Figure 30-239 XCMP7_SHDW1 Register
313029282726252423222120191817161514131211109876543210
XCMP7_SHDW1XCMP7HR_SHDW1
R/W-0hR/W-0h
Table 30-146 XCMP7_SHDW1 Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP7_SHDW1R/W0hXCMP7_SHDW1 Register
The value in the XCMP7_SHDW1 register is loaded into XCMP7_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP7HR_SHDW1R/W0hXCMP7HR_SHDW1 Register
The value in the XCMP7HR_SHDW1 register is loaded into XCMP7HR_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.27 XCMP8_SHDW1 Register (Offset = 29Ch) [Reset = 00000000h]

XCMP8_SHDW1 is shown in Figure 30-240 and described in Table 30-147.

Return to the Summary Table.

Additional Compare 8 Shadow 1 Register

Figure 30-240 XCMP8_SHDW1 Register
313029282726252423222120191817161514131211109876543210
XCMP8_SHDW1XCMP8HR_SHDW1
R/W-0hR/W-0h
Table 30-147 XCMP8_SHDW1 Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP8_SHDW1R/W0hXCMP8_SHDW1 Register
The value in the XCMP8_SHDW1 register is loaded into XCMP8_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP8HR_SHDW1R/W0hXCMP8HR_SHDW1 Register
The value in the XCMP8HR_SHDW1 register is loaded into XCMP8HR_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.28 XTBPRD_SHDW1 Register (Offset = 2A0h) [Reset = 00000000h]

XTBPRD_SHDW1 is shown in Figure 30-241 and described in Table 30-148.

Return to the Summary Table.

Additional Time Base Period Shadow 1 Register

Figure 30-241 XTBPRD_SHDW1 Register
313029282726252423222120191817161514131211109876543210
XTBPRD_SHDW1XTBPRDHR_SHDW1
R/W-0hR/W-0h
Table 30-148 XTBPRD_SHDW1 Register Field Descriptions
BitFieldTypeResetDescription
31-16XTBPRD_SHDW1R/W0hThe value in the XTBPRD_SHDW1 register is loaded into XTBPRD_ ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XTBPRDHR_SHDW1R/W0hThe value in the XTBPRDHR_SHDW1 register is loaded into XTBPRDHR_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.29 XAQCTLA_SHDW1 Register (Offset = 2B0h) [Reset = 0000h]

XAQCTLA_SHDW1 is shown in Figure 30-242 and described in Table 30-149.

Return to the Summary Table.

XAQCTLA Shadow 1 Register

Figure 30-242 XAQCTLA_SHDW1 Register
15141312111098
XCMP8XCMP7XCMP6XCMP5
R/W-0hR/W-0hR/W-0hR/W-0h
76543210
XCMP4XCMP3XCMP2XCMP1
R/W-0hR/W-0hR/W-0hR/W-0h
Table 30-149 XAQCTLA_SHDW1 Register Field Descriptions
BitFieldTypeResetDescription
15-14XCMP8R/W0hAction when Counter = CMP8
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

13-12XCMP7R/W0hAction when Counter = CMP7
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

11-10XCMP6R/W0hAction when Counter = CMP6
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

9-8XCMP5R/W0hAction when Counter = CMP5
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

7-6XCMP4R/W0hAction when Counter = CMP4
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

5-4XCMP3R/W0hAction when Counter = CMP3
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

3-2XCMP2R/W0hAction when Counter = CMP2
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

1-0XCMP1R/W0hAction when Counter = CMP1
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

30.20.3.30 XAQCTLB_SHDW1 Register (Offset = 2B2h) [Reset = 0000h]

XAQCTLB_SHDW1 is shown in Figure 30-243 and described in Table 30-150.

Return to the Summary Table.

XAQCTLB Shadow 1 Register

Figure 30-243 XAQCTLB_SHDW1 Register
15141312111098
XCMP8XCMP7XCMP6XCMP5
R/W-0hR/W-0hR/W-0hR/W-0h
76543210
RESERVED
R-0-0h
Table 30-150 XAQCTLB_SHDW1 Register Field Descriptions
BitFieldTypeResetDescription
15-14XCMP8R/W0hAction when Counter = CMP8
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

13-12XCMP7R/W0hAction when Counter = CMP7
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

11-10XCMP6R/W0hAction when Counter = CMP6
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

9-8XCMP5R/W0hAction when Counter = CMP5
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

7-0RESERVEDR-00hReserved

30.20.3.31 CMPC_SHDW1 Register (Offset = 2BAh) [Reset = 0000h]

CMPC_SHDW1 is shown in Figure 30-244 and described in Table 30-151.

Return to the Summary Table.

CMPC Shadow 1 Register

Figure 30-244 CMPC_SHDW1 Register
15141312111098
CMPC_SHDW1
R/W-0h
76543210
CMPC_SHDW1
R/W-0h
Table 30-151 CMPC_SHDW1 Register Field Descriptions
BitFieldTypeResetDescription
15-0CMPC_SHDW1R/W0hThe value in the CMPC_SHDW1 register is loaded into CMPC_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.32 CMPD_SHDW1 Register (Offset = 2BEh) [Reset = 0000h]

CMPD_SHDW1 is shown in Figure 30-245 and described in Table 30-152.

Return to the Summary Table.

CMPD Shadow 1 Register

Figure 30-245 CMPD_SHDW1 Register
15141312111098
CMPD_SHDW1
R/W-0h
76543210
CMPD_SHDW1
R/W-0h
Table 30-152 CMPD_SHDW1 Register Field Descriptions
BitFieldTypeResetDescription
15-0CMPD_SHDW1R/W0hThe value in the CMPD_SHDW1 register is loaded into CMPD_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.33 XMINMAX_SHDW1 Register (Offset = 2C4h) [Reset = 00000000h]

XMINMAX_SHDW1 is shown in Figure 30-246 and described in Table 30-153.

Return to the Summary Table.

XMINMAX Shadow 1 Register

Figure 30-246 XMINMAX_SHDW1 Register
313029282726252423222120191817161514131211109876543210
XMIN_SHDW1XMAX_SHDW1
R/W-0hR/W-0h
Table 30-153 XMINMAX_SHDW1 Register Field Descriptions
BitFieldTypeResetDescription
31-16XMIN_SHDW1R/W0hThe value in the XMIN_SHDW1 register is loaded into XMIN_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XMAX_SHDW1R/W0hThe value in the XMAX_SHDW1 register is loaded into XMAX_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.34 XCMP1_SHDW2 Register (Offset = 300h) [Reset = 00000000h]

XCMP1_SHDW2 is shown in Figure 30-247 and described in Table 30-154.

Return to the Summary Table.

Additional Compare 1 Shadow 2 Register

Figure 30-247 XCMP1_SHDW2 Register
313029282726252423222120191817161514131211109876543210
XCMP1_SHDW2XCMP1HR_SHDW2
R/W-0hR/W-0h
Table 30-154 XCMP1_SHDW2 Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP1_SHDW2R/W0hXCMP1_SHDW2 Register
The value in the XCMP1_SHDW2 register is loaded into XCMP1_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP1HR_SHDW2R/W0hXCMP1HR_SHDW2 Register
The value in the XCMP1HR_SHDW2 register is loaded into XCMP1HR_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.35 XCMP2_SHDW2 Register (Offset = 304h) [Reset = 00000000h]

XCMP2_SHDW2 is shown in Figure 30-248 and described in Table 30-155.

Return to the Summary Table.

Additional Compare 2 Shadow 2 Register

Figure 30-248 XCMP2_SHDW2 Register
313029282726252423222120191817161514131211109876543210
XCMP2_SHDW2XCMP2HR_SHDW2
R/W-0hR/W-0h
Table 30-155 XCMP2_SHDW2 Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP2_SHDW2R/W0hXCMP2_SHDW2 Register
The value in the XCMP2_SHDW2 register is loaded into XCMP2_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP2HR_SHDW2R/W0hXCMP2HR_SHDW2 Register
The value in the XCMP2HR_SHDW2 register is loaded into XCMP2HR_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.36 XCMP3_SHDW2 Register (Offset = 308h) [Reset = 00000000h]

XCMP3_SHDW2 is shown in Figure 30-249 and described in Table 30-156.

Return to the Summary Table.

Additional Compare 3 Shadow 2 Register

Figure 30-249 XCMP3_SHDW2 Register
313029282726252423222120191817161514131211109876543210
XCMP3_SHDW2XCMP3HR_SHDW2
R/W-0hR/W-0h
Table 30-156 XCMP3_SHDW2 Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP3_SHDW2R/W0hXCMP3_SHDW2 Register
The value in the XCMP3_SHDW2 register is loaded into XCMP3_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP3HR_SHDW2R/W0hXCMP3HR_SHDW2 Register
The value in the XCMP3HR_SHDW2 register is loaded into XCMP3HR_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.37 XCMP4_SHDW2 Register (Offset = 30Ch) [Reset = 00000000h]

XCMP4_SHDW2 is shown in Figure 30-250 and described in Table 30-157.

Return to the Summary Table.

Additional Compare 4 Shadow 2 Register

Figure 30-250 XCMP4_SHDW2 Register
313029282726252423222120191817161514131211109876543210
XCMP4_SHDW2XCMP4HR_SHDW2
R/W-0hR/W-0h
Table 30-157 XCMP4_SHDW2 Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP4_SHDW2R/W0hXCMP4_SHDW2 Register
The value in the XCMP4_SHDW2 register is loaded into XCMP4_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP4HR_SHDW2R/W0hXCMP4HR_SHDW2 Register
The value in the XCMP4HR_SHDW2 register is loaded into XCMP4HR_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.38 XCMP5_SHDW2 Register (Offset = 310h) [Reset = 00000000h]

XCMP5_SHDW2 is shown in Figure 30-251 and described in Table 30-158.

Return to the Summary Table.

Additional Compare 5 Shadow 2 Register

Figure 30-251 XCMP5_SHDW2 Register
313029282726252423222120191817161514131211109876543210
XCMP5_SHDW2XCMP5HR_SHDW2
R/W-0hR/W-0h
Table 30-158 XCMP5_SHDW2 Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP5_SHDW2R/W0hXCMP5_SHDW2 Register
The value in the XCMP5_SHDW2 register is loaded into XCMP5_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP5HR_SHDW2R/W0hXCMP5HR_SHDW2 Register
The value in the XCMP5HR_SHDW2 register is loaded into XCMP5HR_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.39 XCMP6_SHDW2 Register (Offset = 314h) [Reset = 00000000h]

XCMP6_SHDW2 is shown in Figure 30-252 and described in Table 30-159.

Return to the Summary Table.

Additional Compare 6 Shadow 2 Register

Figure 30-252 XCMP6_SHDW2 Register
313029282726252423222120191817161514131211109876543210
XCMP6_SHDW2XCMP6HR_SHDW2
R/W-0hR/W-0h
Table 30-159 XCMP6_SHDW2 Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP6_SHDW2R/W0hXCMP6_SHDW2 Register
The value in the XCMP6_SHDW2 register is loaded into XCMP6_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP6HR_SHDW2R/W0hXCMP6HR_SHDW2 Register
The value in the XCMP6HR_SHDW2 register is loaded into XCMP6HR_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.40 XCMP7_SHDW2 Register (Offset = 318h) [Reset = 00000000h]

XCMP7_SHDW2 is shown in Figure 30-253 and described in Table 30-160.

Return to the Summary Table.

Additional Compare 7 Shadow 2 Register

Figure 30-253 XCMP7_SHDW2 Register
313029282726252423222120191817161514131211109876543210
XCMP7_SHDW2XCMP7HR_SHDW2
R/W-0hR/W-0h
Table 30-160 XCMP7_SHDW2 Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP7_SHDW2R/W0hXCMP7_SHDW2 Register
The value in the XCMP7_SHDW2 register is loaded into XCMP7_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP7HR_SHDW2R/W0hXCMP7HR_SHDW2 Register
The value in the XCMP7HR_SHDW2 register is loaded into XCMP7HR_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.41 XCMP8_SHDW2 Register (Offset = 31Ch) [Reset = 00000000h]

XCMP8_SHDW2 is shown in Figure 30-254 and described in Table 30-161.

Return to the Summary Table.

Additional Compare 8 Shadow 2 Register

Figure 30-254 XCMP8_SHDW2 Register
313029282726252423222120191817161514131211109876543210
XCMP8_SHDW2XCMP8HR_SHDW2
R/W-0hR/W-0h
Table 30-161 XCMP8_SHDW2 Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP8_SHDW2R/W0hXCMP8_SHDW2 Register
The value in the XCMP8_SHDW2 register is loaded into XCMP8_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP8HR_SHDW2R/W0hXCMP8HR_SHDW2 Register
The value in the XCMP8HR_SHDW2 register is loaded into XCMP8HR_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.42 XTBPRD_SHDW2 Register (Offset = 320h) [Reset = 00000000h]

XTBPRD_SHDW2 is shown in Figure 30-255 and described in Table 30-162.

Return to the Summary Table.

Additional Time Base Period Shadow 2 Register

Figure 30-255 XTBPRD_SHDW2 Register
313029282726252423222120191817161514131211109876543210
XTBPRD_SHDW2XTBPRDHR_SHDW2
R/W-0hR/W-0h
Table 30-162 XTBPRD_SHDW2 Register Field Descriptions
BitFieldTypeResetDescription
31-16XTBPRD_SHDW2R/W0hThe value in the XTBPRD_SHDW2 register is loaded into XTBPRD_ ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XTBPRDHR_SHDW2R/W0hThe value in the XTBPRDHR_SHDW2 register is loaded into XTBPRDHR_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.43 XAQCTLA_SHDW2 Register (Offset = 330h) [Reset = 0000h]

XAQCTLA_SHDW2 is shown in Figure 30-256 and described in Table 30-163.

Return to the Summary Table.

XAQCTLA Shadow 2 Register

Figure 30-256 XAQCTLA_SHDW2 Register
15141312111098
XCMP8XCMP7XCMP6XCMP5
R/W-0hR/W-0hR/W-0hR/W-0h
76543210
XCMP4XCMP3XCMP2XCMP1
R/W-0hR/W-0hR/W-0hR/W-0h
Table 30-163 XAQCTLA_SHDW2 Register Field Descriptions
BitFieldTypeResetDescription
15-14XCMP8R/W0hAction when Counter = CMP8
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

13-12XCMP7R/W0hAction when Counter = CMP7
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

11-10XCMP6R/W0hAction when Counter = CMP6
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

9-8XCMP5R/W0hAction when Counter = CMP5
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

7-6XCMP4R/W0hAction when Counter = CMP4
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

5-4XCMP3R/W0hAction when Counter = CMP3
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

3-2XCMP2R/W0hAction when Counter = CMP2
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

1-0XCMP1R/W0hAction when Counter = CMP1
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

30.20.3.44 XAQCTLB_SHDW2 Register (Offset = 332h) [Reset = 0000h]

XAQCTLB_SHDW2 is shown in Figure 30-257 and described in Table 30-164.

Return to the Summary Table.

XAQCTLB Shadow 2 Register

Figure 30-257 XAQCTLB_SHDW2 Register
15141312111098
XCMP8XCMP7XCMP6XCMP5
R/W-0hR/W-0hR/W-0hR/W-0h
76543210
RESERVED
R-0-0h
Table 30-164 XAQCTLB_SHDW2 Register Field Descriptions
BitFieldTypeResetDescription
15-14XCMP8R/W0hAction when Counter = CMP8
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

13-12XCMP7R/W0hAction when Counter = CMP7
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

11-10XCMP6R/W0hAction when Counter = CMP6
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

9-8XCMP5R/W0hAction when Counter = CMP5
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

7-0RESERVEDR-00hReserved

30.20.3.45 CMPC_SHDW2 Register (Offset = 33Ah) [Reset = 0000h]

CMPC_SHDW2 is shown in Figure 30-258 and described in Table 30-165.

Return to the Summary Table.

CMPC Shadow 2 Register

Figure 30-258 CMPC_SHDW2 Register
15141312111098
CMPC_SHDW2
R/W-0h
76543210
CMPC_SHDW2
R/W-0h
Table 30-165 CMPC_SHDW2 Register Field Descriptions
BitFieldTypeResetDescription
15-0CMPC_SHDW2R/W0hThe value in the CMPC_SHDW2 register is loaded into CMPC_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.46 CMPD_SHDW2 Register (Offset = 33Eh) [Reset = 0000h]

CMPD_SHDW2 is shown in Figure 30-259 and described in Table 30-166.

Return to the Summary Table.

CMPD Shadow 2 Register

Figure 30-259 CMPD_SHDW2 Register
15141312111098
CMPD_SHDW2
R/W-0h
76543210
CMPD_SHDW2
R/W-0h
Table 30-166 CMPD_SHDW2 Register Field Descriptions
BitFieldTypeResetDescription
15-0CMPD_SHDW2R/W0hThe value in the CMPD_SHDW2 register is loaded into CMPD_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.47 XMINMAX_SHDW2 Register (Offset = 344h) [Reset = 00000000h]

XMINMAX_SHDW2 is shown in Figure 30-260 and described in Table 30-167.

Return to the Summary Table.

XMINMAX Shadow 2 Register

Figure 30-260 XMINMAX_SHDW2 Register
313029282726252423222120191817161514131211109876543210
XMIN_SHDW2XMAX_SHDW2
R/W-0hR/W-0h
Table 30-167 XMINMAX_SHDW2 Register Field Descriptions
BitFieldTypeResetDescription
31-16XMIN_SHDW2R/W0hThe value in the XMIN_SHDW2 register is loaded into XMIN_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XMAX_SHDW2R/W0hThe value in the XMAX_SHDW2 register is loaded into XMAX_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.48 XCMP1_SHDW3 Register (Offset = 380h) [Reset = 00000000h]

XCMP1_SHDW3 is shown in Figure 30-261 and described in Table 30-168.

Return to the Summary Table.

Additional Compare 1 Shadow 3 Register

Figure 30-261 XCMP1_SHDW3 Register
313029282726252423222120191817161514131211109876543210
XCMP1_SHDW3XCMP1HR_SHDW3
R/W-0hR/W-0h
Table 30-168 XCMP1_SHDW3 Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP1_SHDW3R/W0hXCMP1_SHDW3 Register
The value in the XCMP1_SHDW3 register is loaded into XCMP1_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP1HR_SHDW3R/W0hXCMP1HR_SHDW3 Register
The value in the XCMP1HR_SHDW3 register is loaded into XCMP1HR_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.49 XCMP2_SHDW3 Register (Offset = 384h) [Reset = 00000000h]

XCMP2_SHDW3 is shown in Figure 30-262 and described in Table 30-169.

Return to the Summary Table.

Additional Compare 2 Shadow 3 Register

Figure 30-262 XCMP2_SHDW3 Register
313029282726252423222120191817161514131211109876543210
XCMP2_SHDW3XCMP2HR_SHDW3
R/W-0hR/W-0h
Table 30-169 XCMP2_SHDW3 Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP2_SHDW3R/W0hXCMP2_SHDW3 Register
The value in the XCMP2_SHDW3 register is loaded into XCMP2_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP2HR_SHDW3R/W0hXCMP2HR_SHDW3 Register
The value in the XCMP2HR_SHDW3 register is loaded into XCMP2HR_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.50 XCMP3_SHDW3 Register (Offset = 388h) [Reset = 00000000h]

XCMP3_SHDW3 is shown in Figure 30-263 and described in Table 30-170.

Return to the Summary Table.

Additional Compare 3 Shadow 3 Register

Figure 30-263 XCMP3_SHDW3 Register
313029282726252423222120191817161514131211109876543210
XCMP3_SHDW3XCMP3HR_SHDW3
R/W-0hR/W-0h
Table 30-170 XCMP3_SHDW3 Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP3_SHDW3R/W0hXCMP3_SHDW3 Register
The value in the XCMP3_SHDW3 register is loaded into XCMP3_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP3HR_SHDW3R/W0hXCMP3HR_SHDW3 Register
The value in the XCMP3HR_SHDW3 register is loaded into XCMP3HR_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.51 XCMP4_SHDW3 Register (Offset = 38Ch) [Reset = 00000000h]

XCMP4_SHDW3 is shown in Figure 30-264 and described in Table 30-171.

Return to the Summary Table.

Additional Compare 4 Shadow 3 Register

Figure 30-264 XCMP4_SHDW3 Register
313029282726252423222120191817161514131211109876543210
XCMP4_SHDW3XCMP4HR_SHDW3
R/W-0hR/W-0h
Table 30-171 XCMP4_SHDW3 Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP4_SHDW3R/W0hXCMP4_SHDW3 Register
The value in the XCMP4_SHDW3 register is loaded into XCMP4_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP4HR_SHDW3R/W0hXCMP4HR_SHDW3 Register
The value in the XCMP4HR_SHDW3 register is loaded into XCMP4HR_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.52 XCMP5_SHDW3 Register (Offset = 390h) [Reset = 00000000h]

XCMP5_SHDW3 is shown in Figure 30-265 and described in Table 30-172.

Return to the Summary Table.

Additional Compare 5 Shadow 3 Register

Figure 30-265 XCMP5_SHDW3 Register
313029282726252423222120191817161514131211109876543210
XCMP5_SHDW3XCMP5HR_SHDW3
R/W-0hR/W-0h
Table 30-172 XCMP5_SHDW3 Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP5_SHDW3R/W0hXCMP5_SHDW3 Register
The value in the XCMP5_SHDW3 register is loaded into XCMP5_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP5HR_SHDW3R/W0hXCMP5HR_SHDW3 Register
The value in the XCMP5HR_SHDW3 register is loaded into XCMP5HR_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.53 XCMP6_SHDW3 Register (Offset = 394h) [Reset = 00000000h]

XCMP6_SHDW3 is shown in Figure 30-266 and described in Table 30-173.

Return to the Summary Table.

Additional Compare 6 Shadow 3 Register

Figure 30-266 XCMP6_SHDW3 Register
313029282726252423222120191817161514131211109876543210
XCMP6_SHDW3XCMP6HR_SHDW3
R/W-0hR/W-0h
Table 30-173 XCMP6_SHDW3 Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP6_SHDW3R/W0hXCMP6_SHDW3 Register
The value in the XCMP6_SHDW3 register is loaded into XCMP6_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP6HR_SHDW3R/W0hXCMP6HR_SHDW3 Register
The value in the XCMP6HR_SHDW3 register is loaded into XCMP6HR_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.54 XCMP7_SHDW3 Register (Offset = 398h) [Reset = 00000000h]

XCMP7_SHDW3 is shown in Figure 30-267 and described in Table 30-174.

Return to the Summary Table.

Additional Compare 7 Shadow 3 Register

Figure 30-267 XCMP7_SHDW3 Register
313029282726252423222120191817161514131211109876543210
XCMP7_SHDW3XCMP7HR_SHDW3
R/W-0hR/W-0h
Table 30-174 XCMP7_SHDW3 Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP7_SHDW3R/W0hXCMP7_SHDW3 Register
The value in the XCMP7_SHDW3 register is loaded into XCMP7_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP7HR_SHDW3R/W0hXCMP7HR_SHDW3 Register
The value in the XCMP7HR_SHDW3 register is loaded into XCMP7HR_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.55 XCMP8_SHDW3 Register (Offset = 39Ch) [Reset = 00000000h]

XCMP8_SHDW3 is shown in Figure 30-268 and described in Table 30-175.

Return to the Summary Table.

Additional Compare 8 Shadow 3 Register

Figure 30-268 XCMP8_SHDW3 Register
313029282726252423222120191817161514131211109876543210
XCMP8_SHDW3XCMP8HR_SHDW3
R/W-0hR/W-0h
Table 30-175 XCMP8_SHDW3 Register Field Descriptions
BitFieldTypeResetDescription
31-16XCMP8_SHDW3R/W0hXCMP8_SHDW3 Register
The value in the XCMP8_SHDW3 register is loaded into XCMP8_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XCMP8HR_SHDW3R/W0hXCMP8HR_SHDW3 Register
The value in the XCMP8HR_SHDW3 register is loaded into XCMP8HR_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.56 XTBPRD_SHDW3 Register (Offset = 3A0h) [Reset = 00000000h]

XTBPRD_SHDW3 is shown in Figure 30-269 and described in Table 30-176.

Return to the Summary Table.

Additional Time Base Period Shadow 3 Register

Figure 30-269 XTBPRD_SHDW3 Register
313029282726252423222120191817161514131211109876543210
XTBPRD_SHDW3XTBPRDHR_SHDW3
R/W-0hR/W-0h
Table 30-176 XTBPRD_SHDW3 Register Field Descriptions
BitFieldTypeResetDescription
31-16XTBPRD_SHDW3R/W0hThe value in the XTBPRD_SHDW3 register is loaded into XTBPRD_ ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XTBPRDHR_SHDW3R/W0hThe value in the XTBPRDHR_SHDW3 register is loaded into XTBPRDHR_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.57 XAQCTLA_SHDW3 Register (Offset = 3B0h) [Reset = 0000h]

XAQCTLA_SHDW3 is shown in Figure 30-270 and described in Table 30-177.

Return to the Summary Table.

XAQCTLA Shadow 3 Register

Figure 30-270 XAQCTLA_SHDW3 Register
15141312111098
XCMP8XCMP7XCMP6XCMP5
R/W-0hR/W-0hR/W-0hR/W-0h
76543210
XCMP4XCMP3XCMP2XCMP1
R/W-0hR/W-0hR/W-0hR/W-0h
Table 30-177 XAQCTLA_SHDW3 Register Field Descriptions
BitFieldTypeResetDescription
15-14XCMP8R/W0hAction when Counter = CMP8
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

13-12XCMP7R/W0hAction when Counter = CMP7
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

11-10XCMP6R/W0hAction when Counter = CMP6
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

9-8XCMP5R/W0hAction when Counter = CMP5
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

7-6XCMP4R/W0hAction when Counter = CMP4
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

5-4XCMP3R/W0hAction when Counter = CMP3
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

3-2XCMP2R/W0hAction when Counter = CMP2
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

1-0XCMP1R/W0hAction when Counter = CMP1
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

30.20.3.58 XAQCTLB_SHDW3 Register (Offset = 3B2h) [Reset = 0000h]

XAQCTLB_SHDW3 is shown in Figure 30-271 and described in Table 30-178.

Return to the Summary Table.

XAQCTLB Shadow 3 Register

Figure 30-271 XAQCTLB_SHDW3 Register
15141312111098
XCMP8XCMP7XCMP6XCMP5
R/W-0hR/W-0hR/W-0hR/W-0h
76543210
RESERVED
R-0-0h
Table 30-178 XAQCTLB_SHDW3 Register Field Descriptions
BitFieldTypeResetDescription
15-14XCMP8R/W0hAction when Counter = CMP8
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

13-12XCMP7R/W0hAction when Counter = CMP7
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

11-10XCMP6R/W0hAction when Counter = CMP6
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

9-8XCMP5R/W0hAction when Counter = CMP5
00: Do nothing (action disabled)
01: Clear (low)
10: Set (high)
11: Toggle (Low -> High, High -> Low)

Reset type: SYSRSn

7-0RESERVEDR-00hReserved

30.20.3.59 CMPC_SHDW3 Register (Offset = 3BAh) [Reset = 0000h]

CMPC_SHDW3 is shown in Figure 30-272 and described in Table 30-179.

Return to the Summary Table.

CMPC Shadow 3 Register

Figure 30-272 CMPC_SHDW3 Register
15141312111098
CMPC_SHDW3
R/W-0h
76543210
CMPC_SHDW3
R/W-0h
Table 30-179 CMPC_SHDW3 Register Field Descriptions
BitFieldTypeResetDescription
15-0CMPC_SHDW3R/W0hThe value in the CMPC_SHDW3 register is loaded into CMPC_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.60 CMPD_SHDW3 Register (Offset = 3BEh) [Reset = 0000h]

CMPD_SHDW3 is shown in Figure 30-273 and described in Table 30-180.

Return to the Summary Table.

CMPD Shadow 3 Register

Figure 30-273 CMPD_SHDW3 Register
15141312111098
CMPD_SHDW3
R/W-0h
76543210
CMPD_SHDW3
R/W-0h
Table 30-180 CMPD_SHDW3 Register Field Descriptions
BitFieldTypeResetDescription
15-0CMPD_SHDW3R/W0hThe value in the CMPD_SHDW3 register is loaded into CMPD_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

30.20.3.61 XMINMAX_SHDW3 Register (Offset = 3C4h) [Reset = 00000000h]

XMINMAX_SHDW3 is shown in Figure 30-274 and described in Table 30-181.

Return to the Summary Table.

XMINMAX Shadow 3 Register

Figure 30-274 XMINMAX_SHDW3 Register
313029282726252423222120191817161514131211109876543210
XMIN_SHDW3XMAX_SHDW3
R/W-0hR/W-0h
Table 30-181 XMINMAX_SHDW3 Register Field Descriptions
BitFieldTypeResetDescription
31-16XMIN_SHDW3R/W0hThe value in the XMIN_SHDW3 register is loaded into XMIN_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn

15-0XMAX_SHDW3R/W0hThe value in the XMAX_SHDW3 register is loaded into XMAX_ACTIVE register when shadow to active load occurs.

Reset type: SYSRSn