Martin Moss
As shown in Figure 1, a very basic transmission system for an electric vehicle (EV) comprises three system blocks.
In this blog, I will talk about considerations related to the battery pack and managing state of charge. Because the battery pack is made up of multiple cells connected in series, its effective usability is based on the weakest battery cell. The cell charges differ because of different chemical imbalances that occur during manufacturing, position in the pack (where heating varies), and changes related to usage or longevity.
The difference between cell voltages indicates an unbalanced cell at the system level. The reasons for the differences are still being studied even now. Understanding this well is an important goal, because it affects how long the battery pack will last in terms of power output, as well as the usable life of each individual cell and the lifetime of the battery pack.
One of the most important parameters to consider is state of charge. This is the different amount of charges contained in the individual cells. The amount of imbalance between the cells is measured in percentage. So if one cell has a 94% state of charge and another has 88% state of charge, there is an imbalance of 6%. Each cell will also have a different voltage called the open circuit voltage (OCV), which is the chemical state of charge.
The challenge for a battery pack is that when drawing current, not every cell will lose charge at the same rate. So discharge rates happen at different rates, even though the cells are connected in series. Because some cells sink lower than others, their ability to recycle and absorb the amount of charge will change over time. This cycle is accelerated by other conditions, including temperature. As I mentioned earlier, some cells might be hotter in the pack simply by their position or location near cooling elements.
The main cause of cell failure is having the cell collapse completely, which will affect the battery voltage because the cell is essentially just a resistance lowering the voltage. One way to prevent this is through cell balancing, which is the process of managing how to bring each cell up to a full charge. There are several techniques that can accomplish cell balancing; the simplest is to put a resistor and a metal-oxide semiconductor field-effect transistor (MOSFET) in parallel with each cell, monitoring the voltage across the cells via a comparator that watches the voltage and using simple algorithms to turn on the MOSFET to bypass the cell. The disadvantage of this approach is that the bypassing wastes energy.
Another technique is known as charge shuffling, which doesn’t use resistors and only a capacitor is connected between the cells. This technique does not waste energy in the bypassing, but it is more complex, because you need to connect over wider distances between the cells, rather than bypassing each cell individually.
The technique used in EVs is generally inductive charging, where a transformer connects between cells that are imbalanced because it is a higher power system. The circuit design tends to be quite large, which requires larger area within the design to accommodate the amount of circuitry required to implement the solution.
All of this balancing is based on extensive research into individual cell characteristics and chemistry, represented by spreadsheets and mathematical formulas that use tools like MATLAB to run them. A microprocessor plays an important part in the system by making sure that all balancing executes correctly. To power the microprocessor, the system supplies power from a DC/DC converter, which connects directly to the battery pack and provides either a 48V or 12V output based on the system design. Texas Instruments has two devices that can power the microprocessor; both have the ability to withstand tough conditions in terms of transient performance, along with wide voltage ranges.
The LM5165-Q1 is a 3V to 65V, ultra-low Iq synchronous buck converter with high efficiency over a wide input voltage and load current ranges. With integrated high- and low-side power MOSFETs, this device can deliver up to 150mA of output current at fixed output voltages of 3.3V or 5V, or an adjustable output. The converter is designed to simplify implementation while providing options to optimize the performance of applications like battery-management systems. Working up to 150°C Tj, the device can withstand the high operating temperature ranges found in EVs.
The LM46000-Q1 SIMPLE SWITCHER® regulator is a synchronous step-down DC/DC converter capable of driving up to 500mA of load current from an input voltage range of 3.5V to 60V. The LM46000-Q1 provides exceptional efficiency, output accuracy and dropout voltage in a very small solution size when you need a high input voltage or more current from the system.
There are many ways to manage balancing of Li-ion cells in a pack but how the design looks can depend on many factors, like cost, size, heat and needed accuracy. It is important to consider all these factors in the design strategy before implementation. Get more information about TI’s products which meet strict automotive and system requirements, and view a system block diagram for a HEV high cell count battery pack.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated