TIDUES0E June   2019  – April 2024 TMS320F28P550SJ , TMS320F28P559SJ-Q1

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Highlighted Products
      1. 2.2.1  UCC21710
      2. 2.2.2  UCC14141-Q1
      3. 2.2.3  AMC1311
      4. 2.2.4  AMC1302
      5. 2.2.5  OPA320
      6. 2.2.6  AMC1306M05
      7. 2.2.7  AMC1336
      8. 2.2.8  TMCS1133
      9. 2.2.9  TMS320F280039C
      10. 2.2.10 TLVM13620
      11. 2.2.11 ISOW1044
      12. 2.2.12 TPS2640
    3. 2.3 System Design Theory
      1. 2.3.1 Dual Active Bridge Analogy With Power Systems
      2. 2.3.2 Dual-Active Bridge – Switching Sequence
      3. 2.3.3 Dual-Active Bridge – Zero Voltage Switching (ZVS)
      4. 2.3.4 Dual-Active Bridge - Design Considerations
        1. 2.3.4.1 Leakage Inductor
        2. 2.3.4.2 Soft Switching Range
        3. 2.3.4.3 Effect of Inductance on Current
        4. 2.3.4.4 Phase Shift
        5. 2.3.4.5 Capacitor Selection
          1. 2.3.4.5.1 DC-Blocking Capacitors
        6. 2.3.4.6 Switching Frequency
        7. 2.3.4.7 Transformer Selection
        8. 2.3.4.8 SiC MOSFET Selection
      5. 2.3.5 Loss Analysis
        1. 2.3.5.1 SiC MOSFET and Diode Losses
        2. 2.3.5.2 Transformer Losses
        3. 2.3.5.3 Inductor Losses
        4. 2.3.5.4 Gate Driver Losses
        5. 2.3.5.5 Efficiency
        6. 2.3.5.6 Thermal Considerations
  9. 3Circuit Description
    1. 3.1 Power Stage
    2. 3.2 DC Voltage Sensing
      1. 3.2.1 Primary DC Voltage Sensing
      2. 3.2.2 Secondary DC Voltage Sensing
        1. 3.2.2.1 Secondary Side Battery Voltage Sensing
    3. 3.3 Current Sensing
    4. 3.4 Power Architecture
      1. 3.4.1 Auxiliary Power Supply
      2. 3.4.2 Gate Driver Bias Power Supply
      3. 3.4.3 Isolated Power Supply for Sense Circuits
    5. 3.5 Gate Driver Circuit
    6. 3.6 Additional Circuitry
    7. 3.7 Simulation
      1. 3.7.1 Setup
      2. 3.7.2 Running Simulations
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Required Hardware and Software
      1. 4.1.1 Hardware
      2. 4.1.2 Software
        1. 4.1.2.1 Getting Started With Software
        2. 4.1.2.2 Pin Configuration
        3. 4.1.2.3 PWM Configuration
        4. 4.1.2.4 High-Resolution Phase Shift Configuration
        5. 4.1.2.5 ADC Configuration
        6. 4.1.2.6 ISR Structure
    2. 4.2 Test Setup
    3. 4.3 PowerSUITE GUI
    4. 4.4 LABs
      1. 4.4.1 Lab 1
      2. 4.4.2 Lab 2
      3. 4.4.3 Lab 3
      4. 4.4.4 Lab 4
      5. 4.4.5 Lab 5
      6. 4.4.6 Lab 6
      7. 4.4.7 Lab 7
    5. 4.5 Test Results
      1. 4.5.1 Closed-Loop Performance
  11. 5Design Files
    1. 5.1 Schematics
    2. 5.2 Bill of Materials
    3. 5.3 Altium Project
    4. 5.4 Gerber Files
    5. 5.5 Assembly Drawings
  12. 6Related Documentation
    1. 6.1 Trademarks
  13. 7Terminology
  14. 8About the Author
  15. 9Revision History

Running Simulations

This section contains instructions for PLECS using the Blockset and standalone setup.

Instructions PLECS Blockset:

  1. Open both TIDA_010054_DAB_Converter_Parameters.m and TIDA_010054_DAB_Converter_Simulation.slx files in MATLAB
  2. Open the PLECS circuit in TIDA_010054_DAB_Converter_Simulation.slx
  3. Add the TIDA_010054_DAB_Converter_Models folder to the thermal library (File → PLECS Preferences → Thermal → (Press the plus sign))
  4. Run TIDA_010054_DAB_Converter_Parameters.m to populate parameters in the MATLAB workspace. These can be modified to simulate different operation points or to enable and disable extended-phase-shift control (EPS_EN = 1 or EPS_EN = 0)
  5. Run simulation either by pressing Run in TIDA_010054_DAB_Converter_Simulation.slx or by pressing Simulation → Run in the PLECS Simulation Deck
  6. Simulation can be observed in scopes and displays within the PLECS circuit

Instructions PLECS Standalone:

  1. Open the TIDA_010054_DAB_standalone.plecs file in PLECS
  2. Add the TIDA_010054_DAB_Converter_Models folder to the thermal library (File → PLECS Preferences → Thermal → (Press the plus sign))
  3. Initialization is found under Simulation → Simulation parameters → Initialization. These can be modified to simulate different operation points or to enable and disable extended-phase-shift control (EPS_EN = 1 or EPS_EN = 0)
  4. Run the simulation by pressing Simulation → Run in the PLECS Simulation Deck
  5. Simulation can be observed in scopes and displays within the PLECS circuit

Figure 3-16 shows the primary scope. Use this scope to evaluate the switching waveforms.

Figure 3-17 shows the secondary scope. Use this window to observe output voltage, current, and power, as well as the output voltage ripple and capacitor current.

TIDA-010054 PLECS - Primary Scope Figure 3-16 PLECS - Primary Scope
TIDA-010054 PLECS - Secondary
                    Scope Figure 3-17 PLECS - Secondary Scope
Note: This simulation deck is for system level evaluation. Not all parasitic effects can be simulated accurately. Simulation results can vary from measurement results.
For example, SiC-FET manufacturer models do not include output capacitances. Therefore, soft-switching is achieved down to very light loads in simulation. Efficiencies under light load vary from actual measurements.