TIDUF52 December   2023 MSPM0L1303 , MSPM0L1304 , MSPM0L1305 , MSPM0L1306 , MSPM0L1343 , MSPM0L1344 , MSPM0L1345 , MSPM0L1346

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Photoelectric Smoke Detector Background – DC-Based Signal Chain
      2. 2.2.2 Modulation-Based Smoke Detection Signal Chain
      3. 2.2.3 Optical Sensing AFE Design
        1. 2.2.3.1 TIA
        2. 2.2.3.2 BPF
        3. 2.2.3.3 Demodulator and Integrator
        4. 2.2.3.4 LED Driver
      4. 2.2.4 Optical and Mechanical Design
    3. 2.3 Highlighted Products
      1. 2.3.1 MSPM0L1306
      2. 2.3.2 TLV9062S
      3. 2.3.3 TPS7A24
      4. 2.3.4 TS5A623157
      5. 2.3.5 SN74LVC1G66
      6. 2.3.6 HDC2010
  9. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
      1. 3.1.1 Power
      2. 3.1.2 Communication Interface
      3. 3.1.3 Headers
    2. 3.2 Software Requirements
      1. 3.2.1 Getting Started Firmware
      2. 3.2.2 Measurements and Smoke Detection
      3. 3.2.3 Additional Demonstration Functionality
      4. 3.2.4 Smoke Detector GUI
    3. 3.3 Test Setup
      1. 3.3.1 UL217 Smoke Box and Fire Testing Setup
      2. 3.3.2 Ambient Light Testing Setup
      3. 3.3.3 Air-Quality Sensing Test Setup
    4. 3.4 Test Results
      1. 3.4.1 UL217 Testing Results
      2. 3.4.2 Ambient Light Testing Results
      3. 3.4.3 Air-Quality Sensing Test Results
      4. 3.4.4 Power Testing Results
      5. 3.4.5 Fire Room Smoke Testing
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
      3. 4.1.3 CAD Files
    2. 4.2 Tools and Software
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks
  11. 5About the Author

Air-Quality Sensing Test Setup

This smoke detection module can also provide the average particle size and mass concentration information based on the dual-beam optical arrangement and algorithms for air-quality sensing applications. To evaluate the accuracy of the size and mass concentration performance, the module output is compared with an off-the-shelf laser-based particulate matter (PM) sensor during real-time particle measurement.

Figure 3-13 shows the testing setup, which includes the aerosol generator and a mixing chamber. The aerosol generator generates atomized aerosol particles with different particle sizes, which is sent to the mixing chamber after a diffusion dryer (not shown in Figure 3-13). There are two fans running in the mixing chamber to circulate and mix the air. The reference (laser-based PM sensor) and our smoke-detection module are placed at the same level in the chamber to make sure similar air samples are measured.

GUID-20231020-SS0I-WNDB-P02W-2X3SRLZSNK2B-low.svgFigure 3-13 Testing Setup of Air-Quality Sensing