SLAAEA5 March 2023 MSPM0L1105 , MSPM0L1106 , MSPM0L1303 , MSPM0L1304 , MSPM0L1305 , MSPM0L1306 , MSPM0L1343 , MSPM0L1344 , MSPM0L1345 , MSPM0L1346
It is important to design reliable and accurate smoke detectors for life safety. There are two methods of smoke detection – photoelectric and ionization detection. Photoelectric detectors use LEDs and photodiodes to detect the presence of smoke. Ionization detectors use a radiation source for smoke detection. Photoelectric detection responds better to a smoldering fire compared to ionization detection, which respond better to a flaming fire. This application brief shows how to design a dual-ray photoelectric detector to improve detection on both types of fires using TI's MSPM0 portfolio of Arm® Cortex®-M0+ microcontrollers (MCUs).
In smoke detection circuits (see #FIG_KHS_FLX_KWB), photoelectric detectors can use one or multiple LEDS. A microcontroller measures the photodiode current when the LEDs are turned off, and another when the LEDs are turned on. When smoke is not present in the chamber, there is little variance between the two measurements. When smoke is present, the LED light is diffracted throughout the chamber causing the photodiode to detect more light, which increases the current output and can be interpreted as smoke detection. Then, the photodiode current is converted into voltage by a transimpedance amplifier (TIA). The voltage is fed through a gain stage to allow proper sampling by an analog-to-digital converter (ADC). Using multiple LEDs provides the benefits of leveraging different wavelengths (such an IR and blue LEDs) to improve the detection of different types of smoke and rejection of false detections.
What can MSPM0 do in smoke detector applications?
The high level of analog integration in the MSPM0 portfolio helps optimize board space while lowering overall system costs. The MSPM0L134x MCUs can be used to design a dual-ray smoke detector by integrating the following analog peripherals: a zero-drift operational amplifier (OPA), a transimpedance amplifier with integrated programmable gain stage up to 32x, and an 8-bit reference DAC all at a low cost.
MSPM0L134x microcontrollers offer many key features such as:
#FIG_JPQ_3LX_KWB shows the dual ray smoke detector design using an MSPM0L134x MCU. The two OPAs are used for photodiode signal conditioning and the GPIOs are used for LED biasing. The TIA converts the photodiode current into voltage. The voltage is then fed into OPA1 where the amplified signal is fed to the internal 12-bit ADC for sampling. These on-chip analog peripherals are designed for flexibility and easy configuration.
For commercial smoke detectors, a simile communication interface can be used for the panel to be able to talk to individual detectors installed on a loop. The MSPM0 MCU can be used to decode this data respond back to the system. In residential smoke detectors, a piezo sounder is typically used to general alarm tones. The MSPM0 MCU can be used to interface to this using an H-bridge drive in order to output not only the alarm tone but also more complex audio waveforms like voice playback as well.
Conclusion
MSPM0 MCUs leverage TI’s comprehensive analog integration to strengthen performance, lower cost, and create a reliable solution for smoke detectors. This MSPM0 portfolio offers pin-to-pin compatible packages, various memory variants, and diverse peripherals to help meet the system requirements to accelerate design to market. To begin, use the MSPM0L1306 LaunchPad development kit to develop and configure your designs for the many applications that a simple MCU can enable.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated